基于K-S检验与距离相关分析的网络借贷信用评价指标体系构建
DOI:
CSTR:
作者:
作者单位:

内蒙古财经大学 经济学院

作者简介:

通讯作者:

中图分类号:

F830.5

基金项目:

国家自然科学基金面上项目(71171031);内蒙古自然科学基金面上项目(2017MS0709)。


Construction of Evaluation Index System of Network Credit Based on Significant Differentiation of Default
Author:
Affiliation:

School of Economics,Inner Mongolia University of Finance and Economics,Hohhot,Inner Mongolia 010070 China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    网络借贷作为一种极具活力的新型互联网金融模式,提升了金融资源的使用效率,缓解了小企业融资难的困局。但是相比于传统的信贷方式,由于贷款门槛较低、借贷双方缺乏现实接触等因素导致网络借贷的信息不对称更严重,导致平台违约事件频发、信用风险加剧。构建一套合理的网络借贷的信用评价指标体系,科学评估其信用风险状况,从而对网络借贷这一新经济业态潜在风险及时甄别与预防,对互联网金融健康持续发展意义重大。本文根据K-S检验与距离相关分析相结合,筛选对借款客户违约状态甄别能力强的指标,建立了网络借贷信用评价指标体系,并通过全球最大的P2P网络借贷平台LendingClub的实际交易数据进行实证研究,结果表明:本研究评价指标体系中的借款金额、借款者职业、失业率等12个指标均对区分违约状态有显著影响。本文的特色与创新一是由于K-S检验统计值愈大、其对应违约样本分布函数与非违约样本分布函数的偏离愈大,表明评价指标甄别借款客户违约状态的能力愈强,遴选能显著区分违约状态与否的评价指标,弥补现有研究不以能否区分违约状态为标准遴选评价指标的不足。二是通过距离相关系数反映同一准则层下两个指标间的线性与非线性关联程度,在关联程度强的一对指标中,剔除K-S检验较小、对违约状态影响较小的指标,删除了反映信息冗余指标,克服现有相关分析、因子分析等指标筛选方法仅揭示了指标间的线性关联程度,无法反映指标间的非线性关联程度的弊端,拓展信用评价指标筛选方法的适用范围。

    Abstract:

    As a new and vigorous Internet financial model, Internet lending improves the efficiency of the use of financial resources and alleviates the financing difficulties of small enterprises. However, compared with traditional credit methods, the information asymmetry of online lending is more serious due to the low threshold of loans and the lack of real contact between borrowers and lenders, which leads to frequent platform defaults and increased credit risk. It is of great significance for the healthy and sustainable development of Internet finance to construct a set of reasonable credit evaluation index system and scientifically evaluate its credit risk status, so as to screen and prevent the potential risk of Internet lending in time. Based on K-S test and rank correlation analysis, this paper screens out indicators with strong ability to identify default status of borrowers, establishes an evaluation index system of online lending credit, and conducts an empirical study on the actual transaction data of Lending Club, the largest P2P network lending platform in the world. The results show that the amount of borrowing, the occupation of borrowers and the unemployment rate in the evaluation index system of this study. The 12 indicators have a significant impact on distinguishing default status. One of the characteristics and innovations of this paper is that the larger the statistical value of K-S test is, the larger the deviation between the distribution function of corresponding default samples and the distribution function of non-default samples is. It shows that the stronger the ability of the evaluation index to discriminate the default status of borrowers, the better the evaluation index can be selected to distinguish the default status from the non-default status. Foot. The second is to use K-S test and rank correlation analysis, which have no requirement on the overall distribution of evaluation indicators and are suitable for the non-parametric statistical method with unknown specific distribution to screen the evaluation indicators of network lending credit, to overcome the drawbacks of existing index screening methods that require the evaluation indicators to obey the strict requirement of normal distribution, and to expand the scope of application of index screening methods.

    参考文献
    相似文献
    引证文献
引用本文

段翀.基于K-S检验与距离相关分析的网络借贷信用评价指标体系构建[J].技术经济,2020,39(5):35-47,59.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-24
  • 最后修改日期:2020-05-31
  • 录用日期:2020-01-19
  • 在线发布日期: 2020-07-16
  • 出版日期:
文章二维码
您是第 位访问者
电话:010-65055536, 18515632865  Email:jishujingji@cste.org.cn
地址:北京市海淀区学院南路86号(100081)  邮政编码:80-584
ICP:京ICP备05035734号-5
技术经济 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
×
《技术经济》
“数字经济驱动高质量发展:融合、创新与共享”专题征稿启事