AI大模型赋能的技术与需求双轨创新——机制与实践探索
CSTR:
作者:
作者单位:

1.中国科学院科技战略咨询研究院;2.中国科学院大学公共政策与管理学院

作者简介:

通讯作者:

中图分类号:

F427

基金项目:

国家自然科学(项目编号:71834006、72104227、72334007);教育部哲学社会科学重点研究项目(项目编号:20JZD022)。


Dual-Trajectory Innovation Enabled by AI Large Models in Technology and Demand: Mechanisms and Practical Exploration
Author:
Affiliation:

1.Institutes of Science and Development,Chinese Academy of Sciences;2.Institutes of Science and Development, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    AI大模型的发展正在重塑技术推动与需求拉动的创新模式,使二者互动机制更加紧密,然而现有文献对AI大模型赋能下需求-技术互动创新过程与机制缺乏探讨。为此,本文基于技术轨道与市场轨道视角,本文通过分析人工智能大模型在天猫精灵产品创新中的应用,提炼出AI大模型赋能下的技术推动、需求拉动及双轨交互创新路径。研究表明:(1)传统人工智能技术通过参与技术识别、市场验证和测试发布等环节融入技术推动创新,通过用户需求获取、评估与转化、促进个性化需求挖掘与实现等环节嵌入需求拉动创新;(2)AI大模型通过促进创新构思与技术演进、双向互动与迭代创新及知识扩展与行业转型,深度赋能技术与需求的协同演进及产业升级。(3)与传统人工智能技术推动的“技术-需求”弱耦合模式下的创新扩散相比,AI大模型以其拓展“用户属性”“创新者职能”以及“知识领域”方面的显著优势推动了“技术-需求”强耦合模式下的创新扩散。本研究为AI大模型赋能下的企业创新管理和产业升级提供理论依据与实践启示。

    Abstract:

    The development of AI large models is reshaping the innovation model driven by technology-push and demand-pull, making the interaction mechanisms between the two more closely integrated. However, existing literature lacks a systematic discussion on the innovation process driven by the interaction between demand and technology under the influence of AI large models. For this reason, a case study of AI large model-empowered innovation in the Tmall Genie product was conducted, based on the perspectives of the technology track and market track. The pathways for technology-push, demand-pull, and dual-track interactive innovation enabled by AI large models were extracted. The findings indicate that (1) traditional AI technologies contribute to technology-push innovation by participating in stages such as technology identification, market validation, and testing, while also embedding in demand-pull innovation through stages like user need acquisition, evaluation, and transformation, facilitating the discovery and realization of personalized demands; (2) AI large models enable the synergistic evolution of technology and demand, and support industry upgrading by promoting innovation ideation, technological advancement, bidirectional interaction, iterative innovation, knowledge expansion, and transformation; (3) Compared with the innovation diffusion under the weak coupling mode between technology and demand driven by traditional AI, AI large models, with their significant advantages in expanding “user attributes,” “innovator roles,” and “knowledge domains,” promote innovation diffusion under the strong coupling mode between technology and demand. This study provides theoretical foundations and practical insights for enterprise innovation management and industrial upgrading empowered by AI large models.

    参考文献
    相似文献
    引证文献
引用本文

余江,聂佳宇,李婉晴,陈凤. AI大模型赋能的技术与需求双轨创新——机制与实践探索[J].技术经济,2024,43(12):10-22.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-18
  • 最后修改日期:2024-12-17
  • 录用日期:2024-10-29
  • 在线发布日期: 2024-12-27
  • 出版日期:
文章二维码
您是第 位访问者
电话:010-65055536, 18515632865  Email:jishujingji@cste.org.cn
地址:北京市海淀区学院南路86号(100081)  邮政编码:80-584
ICP:京ICP备05035734号-5
技术经济 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
×
《技术经济》
“数字经济驱动高质量发展:融合、创新与共享”专题征稿启事