多维邻近性对校企创新合作绩效的影响研究

梁玲玲,路玉莹

(上海应用技术大学 经济与管理学院,上海 201418)

摘 要:在百年未有之大变局的时代背景下,加强校企创新合作、促进科技成果转化是提升国家创新实力、促进国家科技变革的关键。然而,总体上看中国校企创新合作绩效不容乐观,如何提升其整体绩效也就成了亟需解决的问题。多维邻近性作为衡量校企创新合作绩效的常用前置因素,其影响关系也在不断随外界环境的变化而变化。因而本文在理论分析及案例调研的基础上,构建了多维邻近性的内涵维度及对校企创新合作绩效的影响关系模型,并通过问卷调查等方法结合结构方程对概念模型进行探索验证。结果表明:认知、技术及关系邻近性通过合作信任度和合作依赖度两个中介正向影响校企创新合作绩效,地理邻近性的作用在下降,政府引导支持和技术中介服务在两者之间起的调节作用互补且显著。

关键词:邻近性;创新合作;校企;合作信任度;合作依赖度

中图分类号: F273.1 文献标志码: A 文章编号: 1002-980X(2022)2-0062-13

一、引言

2021年4月,习近平主席在清华大学视察时强调:"勇于攻克'卡脖子'的关键核心技术,加强产学研深度融合,促进科技成果转化。"同年,习主席再次强调:"强化国家战略科技力量,提升国家创新体系整体效能"。政府的大力支持、激烈的市场竞争和快节奏的技术变革,促使校企创新合作逐渐成为中国创新与改革的重要驱动力。但校企创新合作的成果良莠不齐,如何建立校企间有效的合作关系,促进校企创新合作绩效成为各界关注的重要问题。

多维邻近性在解释企业间的内部合作关系、揭示创新中扮演着重要的角色(Guo et al, 2021)。目前的研究主要探讨多维邻近性对校企创新合作绩效的直接影响。但事实上,校企之间创新合作能否产生满意的合作绩效很大程度上取决于双方关系的建立与维持即合作者的信任程度与依赖程度。多维邻近性通过影响校企间的信任与依赖关系而影响创新合作绩效。然而多维邻近性的指标选取及各指标对校企创新合作绩效的影响尚未达成共识。另外,中国校企创新合作的展开离不开政府与技术中介等外部力量的影响,但目前少有文献同时从内外部出发考虑多维邻近性对校企创新合作的影响。

为此,本文将在前人的基础上深入研究多维邻近性、合作信任度及合作依赖度与校企创新合作绩效之间的关系,并引入政府引导支持和技术中介服务两个调节变量,基于中国当前的情境揭示多维邻近性与校企创新合作绩效间的内在运行关系,旨在为相关主体开展校企创新合作活动和提高校企创新合作绩效提供切实可行的建议与对策。

二、理论回顾与模型假设

(一)多维邻近性

鉴于目前学界对多维邻近性的研究存在指标多样且部分指标涵盖范围有所重叠等问题,而且近几年外在政治、经济、技术等大环境也发生了巨大变化。因而,本文在确定多维邻近性指标的时候,首先实地走访了上海市几家高新技术企业的部门主管及科研负责人,另外通过智慧芽和Patentics软件平台对校企专利合作数据进行可视化分析,在此基础上,还借鉴了法国互动主义的观点将多维邻近性分为地理邻近性和组织化邻近性(李琳和雒道政,2013),并将组织化邻近性进一步划分为技术邻近性、认知邻近性和关系邻近性。其中,地理邻近性是指两个合作组织之间的空间距离和物理距离,它对校企创新合作绩效的影响一直备受争论

收稿日期:2021-06-28

基金项目:国家自然科学基金青年科学基金项目"企业专利战略行为的价值创造机制及传导路径研究"(71502110)

作者简介:梁玲玲,博士,上海应用技术大学经济与管理学院讲师,研究方向:技术创新与知识产权管理研究;路玉莹,上海应用技术大学经济与管理学院硕士研究生,研究方向:技术创新与知识产权管理研究。

(Sun 和 Liu, 2016)。认识邻近性是指合作双方在感知、解释和评估世界方面的相似性(曹兴和宋长江, 2017),它被认为是校企创新合作开展的基础。认知邻近在一定程度上弥补了地理邻近的不足,增加了合作者对彼此的认知(Dallasega和 Sarkis, 2018)。关系邻近性是指合作的校企之间存在明显的社会关系,可将其分为学缘、业缘和亲缘关系三大类(胡杨和李郇, 2017;张省, 2017)。技术邻近性指双方具有技术的相似程度,即基于组织间共享的技术经验和知识基础(Petruzzelli, 2011)。

(二)多维邻近性与合作信任度、合作依赖度

具有较近地理位置的合作企业往往面临着相似的政策制度环境,降低了合作者的沟通成本与搜索成本,为双方的合作提供了前提保障。同时,合作企业可通过建立研究中心等手段保持与合作企业的近距离接触(胡杨和李郇,2017),增强对合作方信息的掌握,提升互信程度(洪名勇,2017)。同时,较近的地理邻近性也会促使合作方基于正式或非正式的接触来观察对方的行为,降低心理距离以增强互信程度(李婷婷等,2016),提升合作偏好。马海涛等(2012)的研究也证实了地理邻近性影响组织间信任的产生。

企业的文化、价值观、目标及愿景等认知因素会决定企业的行为。当合作双方具有共同的目标和价值观时,其行为规范会趋同,使组织和个人及时感知与信任相关的符号,实现信息有效沟通,减少由双方认知不同而带来的冲突(Molina-Morales et al,2014),增加合作伙伴间分享收益、共担成本和风险的意愿,增加双方的情感信任(Heringa et al,2014)。还可以通过促进知识流在校企之间的互换、转移与获取,减少市场信息不对称现象,增强信息共享(Knoben 和 Oerlemans,2006),提升认知与情感信任。

技术邻近性通常与企业间的知识吸收能力相关。合作组织间吸收、整合、共享信息的能力越强,双方的信任程度越高。当合作双方的技术知识与技术经验相似时,更容易发生知识的获取与吸收——相似知识的流动、异质知识资源的获取、技术诀窍的掌握等(刘凤朝等,2015;Guan和Yan,2016),有效提高合作双方对彼此能力的信任程度。Chuluun et al(2017)的研究也证实了技术邻近性越强的公司其交流与沟通的障碍越小,其对于相互知识的理解也就更为容易。

关系邻近性也会正向影响合作信任度。相比于西方国家,中国对于人情关系的看重使得关系的亲疏影响人们的情感信任(王沛等,2020),干预企业选取合作对象。合作双方的关系越紧密,合作交流就会更便捷,评估也就越全面,促进合作信任程度增加。当合作组织间有着积极的互动历史时,双方合作的期望也容易达成一致,进而减少合作过程中的不确定性(Petruzzelli,2011),增强项目的信任。陈蕊(2020)发现关系邻近不仅可以促使集群企业内部的新知识和新技术的外溢,加强对隐性知识的利用,还会促使合作双方形成密切而稳定的网络关系。基于此,本文提出假设1:

地理邻近性正向影响合作信任度(H1a);

认知邻近性正向影响合作信任度(H1b);

技术邻近性正向影响合作信任度(H1c);

关系邻近性正向影响合作信任度(H1d)。

地理邻近性通过减少信息偏差(张涵和杨晓昕,2021),降低成本及加速知识集聚与流动等方式,在合作过程中磨合校企双方的知识体系,逐步增强两者的结构依赖程度和过程依赖程度(高长元等,2021)。而且地理邻近也促使合作企业中部分以技术诀窍、个人经验等方式存在的信息得以传播(郭熙保和龚广祥,2021),促进合作企业对隐形知识和默会知识的吸收,增强双方的合作依赖度。Lippi和Mammi(2017)的研究证实,较近的地理位置会使得具有平等权利的不同企业间的部门依赖程度加深。

信息不对称、知识不对等、资源不足等客观原因是企业进行合作并产生依赖的原因(Huo et al, 2017; 尹江海和程培堽, 2021),但这些问题会导致机会主义而损害合作方的利益。通过制定完备的制度和详细的合同等较强的控制手段会减少合作过程中的机会主义(Huo et al, 2017; 曾伏娥等, 2016)。但这种强控制会向合作方传达不信任的信号,损害合作依赖程度(Yang et al, 2011)。因此,企业通常寻求与自身认知相似的企业以减少交易成本,缓解合作过程中的存在的这种矛盾,增强对合作的依赖。

Parkinson et al(2018)的研究发现,企业在创新资源缺乏时会倾向于选择与自身知识体系相近的企业进行合作,以便于合作双方更容易对彼此的技术、资源进行判断、获取、吸收、利用与创造(Diestre 和 Rajagopalan,2012;宁东玲,2011),增强对创新收益的感知,提升双方的合作依赖程度,增强合作的稳定性。高校的知识通常具有多元化,且其获取成本较低,当高校的关键技术与企业方的知识高度相似时,会促使企

业增强对高校的过程依赖与结构依赖(赵炎等,2021)。

关系的邻近会使企业基于之前的经验,帮助合作者了解合作伙伴的业务流程,对合作者的行为、目的及未来目标做出预测(赵宇楠等,2019),使得合作者高度重视双方在合作中的参与,增强合作过程中的依赖性。王永贵等(2017)的研究证实,当双方存在某种关系时,就会将合作双方形成的关系视为企业的无形资产去维护,积极主动去探索对方的需求,弱化自身经济效益,增强合作依赖程度。即关系邻近会促使校企积极主动去探索对方需求,增强资源的共享与交流,提升了合作过程中结构依赖和过程依赖。基于此,本文提出假设2:

地理邻近性正向影响合作依赖度(H2a);

认知邻近性正向影响合作依赖度(H2b);

技术邻近性正向影响合作依赖度(H2c);

关系邻近性正向影响合作依赖度(H2d)。

(三)合作信任度、合作依赖度与创新合作绩效

创新合作绩效是指由于校企之间的基于创新的活动所产生的成果绩效,可用成果性绩效和成长性绩效来衡量。但创新活动的具有复杂性与特殊性,使得组织间的合作信任度和合作依赖度成为研究校企创新合作绩效的重要指标。

信任是对正式契约的补充(杨扬等,2020),也是组织合作的前提。在信息不对称的情况下,良性的合作信任度可以抑制机会主义,增强合作概率,提升合作绩效。同时,合作信任度有效地促进合作过程中的知识交换、信息转移,正向影响组织中员工的工作态度与行为,降低合作焦虑,减少交易成本,直接影响合作的绩效(孙国强等,2019)。李丹和杨建君(2018)的研究证实合作信任会促进突破式创新和渐进式创新,提升创新合作绩效。张慧等(2021)的研究也进一步证实了合作信任对创新绩效的影响。基于此,本文提出假设3a:

合作信任度正向影响创新合作绩效(H3a)。

资源依赖理论认为组织间的合作由企业所掌握的资源决定,而外界环境复杂,企业无法通过研发、并购、交易等手段获取全部的资源,因而企业开展合作并产生依赖。一般情况下,企业间的合作是长期且互惠的(Liu et al, 2021),因而组织间的合作依赖可以促使企业从合作方持续获取新兴或成熟的知识,加速创新绩效的提升(Roldán Bravo et al, 2016)。王永贵等(2017)研究证实组织间依赖的不同维度会促进合作企业创新绩效的提升。但长期合作造成的由路径依赖带来的结构依赖与过程依赖,反而会阻碍企业的创新。不过,高校方的知识较为多元且校企组织性质不同,容易创造新的资源,削弱由路径依赖带来的合作依赖的提升,使得合作依赖度正向影响校企的创新合作绩效。基于此,本文提出假设3b:

合作依赖度正向影响创新合作绩效(H3b)。

(四)合作信任度、合作依赖度的中介作用

依据于贵芳等(2020)的研究,将信任划分为认知信任和情感信任,前者指合作方基于所掌握的信息对合作伙伴的能力所做出的综合性的心理感知和主观评价,后者注重情感成分的评价。依据吕文晶等(2017)的研究将组织间的依赖分为结构依赖与过程依赖。其中,结构依赖是指发生在合作过程中的双方拥有的资源不可替代,过程依赖是指关系双方内部拥有相互关联的资源,企业出于经济目的进行合作。合作信任度和合作依赖度在多维邻近性与校企创新合作绩效中起到中介的作用。

如上文所述,地理、认知、关系和技术邻近性可通过建立正式科研场所、增加双方接触、增强合作共识、提高信任感知、加强信息共享等手段,增强企业间的信任程度。而合作信任度则可通过促进合作组织对知识的吸收、创造、转移和应用,形成组织间合作的良好循环,提升创新的合作绩效。由于校企创新合作存在信息不对称及机会主义等现象,极大的影响了合作的依赖程度,阻碍校企创新合作绩效的提升。地理、认知、技术和关系邻近性也可以通过减少信息偏差、降低交易成本、抑制机会成本、创造创新资源等方式提升企业间的过程依赖和结构依赖。合作依赖程度的提升促进了企业间的资源获取与长期合作,影响了创新合作的绩效。基于此,本文提出假设4:

合作信任度在地理邻近性、认知邻近性、技术邻近性、关系邻近性与创新合作绩效间起中介作用(H4a); 合作依赖度在地理邻近性、认知邻近性、技术邻近性、关系邻近性与创新合作绩效间起中介作用(H4b)。

(五)政府引导支持、技术中介服务的调节作用

在校企合作过程中,政府和技术中介不可避免地作为第三方参与到合作的过程中,对合作双方的信任度与依赖度起到调节作用,实现学术界与工业界之间技术与知识的平稳流动(Fernández et al,2021),加强企业间的参与程度并减少利益冲突,减弱了合作过程中的信息不对称和权力不对等问题,极大程度地促进了创新过程及创新成果的转化。但政府引导支持和技术中介服务所起的调节作用不尽相同。

政府在交易市场中凭借其公信力和权威度成为交易过程中强有力的第三方,通过政策制定、鼓励引导等方式以正式或非正式的契约为保障,可为校企双方提供信息沟通交流的平台(Liu et al,2017),减少双方的信息沟通障碍,增进双方的认知了解,减少合作的不确定性。同时,政府的财政补贴、税收优惠等为开展校企创新合作提供动力、分担资金风险,提升企方或校方积极寻求与自身需求相符的合作伙伴的概率,有效增加校企合作创新机会,减少合作过程的资金矛盾与利益冲突。Hemmert et al(2014)的研究初步发现,知识产权政策、共享治理和倡导行为等企业及政府行为会对企业间的信任起调节作用。因此,政府的引导支持的行为有效调节了地理、认知、技术和关系邻近性对信任度和依赖度的影响,提升了创新合作的绩效。基于此,本文提出假设5:

政府引导支持会正向调节地理邻近性与合作信任度、合作依赖度之间的关系(H5a); 政府引导支持会正向调节认知邻近性与合作信任度、合作依赖度之间的关系(H5b); 政府引导支持会正向调节技术邻近性与合作信任度、合作依赖度之间的关系(H5c); 政府引导支持会正向调节关系邻近性与合作信任度、合作依赖度之间的关系(H5d)。

依据交易成本理论,校企双方所处的不完全竞争市场内存在大量不对称信息,市场参与者提供不同质的产品,这使得校企即使出于成本的考虑选择专利合作的方式,也会在筛选信息、签订契约、执行契约等环节耗费大量的成本。不同于政府的强力保障与财政补贴等方式,技术中介作为市场中的第三方,更多依据市场条件提供及时、客观、准确且较为完整的信息,在校企间扮演知识吸收与传播的角色。首先,该机构所拥有或掌握的信息较为丰富可以提供基于技术信息的联络从而降低技术搜索的难度,降低信息不对称的风险,使得不同实力的校企双方可以接受同质的信息,减少了信息的偏差。其次,技术中介可以依据校企各方需求为合作双方定制提供知识产权保护工作以保障双方的权益等方式,在一定程度上增强了信息的安全性。最后,此类机构往往具有丰富的校企合作经验,可以为校企双方开展合作提供参考,减少纠纷,减少合作的不确定性,提升了创新资源整合的效率(梁玲玲等,2021)。因此,技术中介服务的存在有效的调节了校企合作过程中地理、

认知、技术和关系邻近性与信任度 与依赖度之间的关系,提升创新合作的绩效(股存毅和刘婧玥, 2019)。基于此,本文提出假设6:

技术中介服务会正向调节地理 邻近性与合作信任度、合作依赖度 之间的关系(H6a);

技术中介服务会正向调节认知 邻近性与合作信任度、合作依赖度 之间的关系(H6b);

技术中介服务会正向调节技术 邻近性与合作信任度、合作依赖度 之间的关系(H6c);

技术中介服务会正向调节关系 邻近性与合作信任度、合作依赖度 之间的关系(H6d)。

基于以上假设,本文研究模型如图1所示。

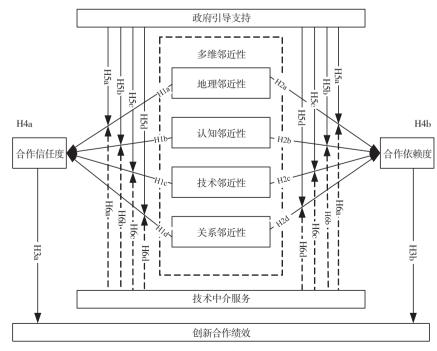


图1 研究模型

三、研究设计

(一)量表描述与样本数据

为避免结构方程中的数据过于偏态,调查问卷中研究量表借助了李克特7点量表进行测量,对应的测量值分别为1~7(1=非常不同意,7=非常同意)。在问卷设计上,为保证问卷数据整体的信效度,文章均借助已成熟的国内外量表进行整合与化用。主要利用Ruiz-Ortega et al(2021)、熊捷和孙道银(2017)等的量表及胡杨和李郇(2017)、张省(2017)、翁艺丹(2016)、陈蕊(2020)等的研究对地理邻近性(geographical proximity, GP)、认知邻近性(cognitive proximity, CP)、技术邻近性(technology proximity, TP)、关系邻近性(relational proximity, RP)等自变量进行描述;采用肖振鑫和高山行(2015)、郭元源等(2014)的量表对政府引导支持(government guidance and support,GGS)、技术中介服务(technology intermediary services,TIS)等调节变量进行描述;采用 Yang et al(2021)、Jean R-J et al(2016)量表对合作信任度(cooperative trust,CT)和合作依赖度(cooperative dependence,CD)中介变量进行描述;采用李玲(2011)等的量表对创新合作绩效(innovation cooperation performance,CIP)进行描述。综上,本文构建的问卷测量指标见表 1。

为更贴合本文研究目的,问卷发放的主要对象为有校企研发合作行为的科创型企业。在正式调研前,走访三家科创型公司,对问卷进行处理并进行两次小样本的预调研。在2020年3—6月期间,通过直接发放、实地走访与线上定点投放等方式,共回收327份问卷,其中无效问卷17份,测量项目与问卷量之比高于1:10,数据测量效果稳定。主要投放地点为上海、北京及周边省市。数据特征见表2。同时,利用SPSS24.0软件及Amos26.0软件对最终的结果和数据进行了定量分析。

表1 问卷题目

变量	一级项目	二级项目	测量项目
			相对地理位置较近
	地理邻近性		在合作研发过程中,为了实现面对面交流耗费的交通时间较短
			在合作研发过程中,为了实现面对面交流耗费的交通成本较低
			双方负责人相互了解对方的需求和策略,并市场进行交流和分享
	认知邻近性		双方负责人有相似的目标和价值观念
自变量			双方负责人或研发人员对合作关系持积极态度
日文里			有相似项目经验的高校
	技术邻近性		有同等或相似技术水平的高校
			与本单位专业领域互补的高校
			有亲缘关系基础的高校(负责人或研发人员之间有亲属关系)
	关系邻近性		有学缘关系基础的高校(负责人或研发人员之间有相似的学缘或相同的培训经历或共同的毕业院校)
			有业缘关系基础的高校(负责人或研发人员之间曾是同事关系、上下级关系、伙伴关系)
			提供了必要的信息和支持
	政府引导支持		提供了基于技术信息的联络,降低了技术搜寻难度
调节变量			为知识产权保护工作提供了保障
州日文里			提供了基于技术信息的联络,降低了技术搜寻难度
	技术中介服务		提供了相关知识产权或技术保护工作,保护了双方的权益
			降低了创新研发活动的难度
		情感信任	公司信任高校的服务质量,很少对合作高校进行监督和控制
	合作信任度	旧恋自止	在做重大决策时,公司认为高校不会为了自身利益故意损害我方利益
	日旧旧区及	认知信任	即便不能很好监控高校的行为,公司有时也愿意将一些重要业务交给该高校
中介变量		火州 旧 压	基于对方的声誉或以往的经验,公司相信高校方具备共同完成研发的技术和能力
17月又里		结构依赖	公司非常依赖该高校
	合作依赖度	24 19 IX 450	公司可以用较低成本从高校获取珍贵的创新资源
	DIF ICARIZ	过程依赖	更换合作伙伴会耗费较高的成本
		过往依赖	研发阶段,合作关系的终止会给企业带来较大的损失
			近几年从新产品的开发中获得了丰厚的利润
		成长性指标	近几年合作研发的专利数量或新产品数量越来越多
因变量	创新合作绩效		近几年校企合作论文数越来越多
口人里	DIMI DIFFIX		近几年校企合作项目的数量越来越多
		成果性指标	近几年研发能力或技术转化能力不断提高
			对以往合作项目较为满意

受访企业属性	类别	百分比(%)	受访企业属性	类别	百分比(%)
	日用消费品/家电	13		50人以内	21
	汽车/机械制造	12		50~100人	14
	电气/光学	6	企业员工人数	100~500人	28
企业类型	半导体/电子信息	7		500~1000人	10
	IT硬件/软件	22		1000人及以上	27
	化学/生物/制药	13		5年内	14
	其他	27		6—10年	28
企业性质	国有	33	企业成立年限	11-15年	16
	民营	50		16—20年	22
	外资	5		21年及以上	20
	合资	8	一是否单独设置研发机构。	是	79
	其他	4	7 定行毕烟区直研及机构	否	21

(二)信效度分析与数据检验

1. 信效度分析

为保障变量设计的合理性,文章通过实地访谈收集问卷,进行小样本检验。对问卷数据进行最终处理后形成了最终的测量量表即表3和表4,主要是对问卷的信效度及区别效度进行验证。见表3,各因子的载荷量均大于0.6,其组合信度(CR)值高于0.7,收敛效度总体高于0.6;见表4,各个题项间存在明显的区别效度。综上,问卷的整体质量良好。

表3 信效度检验表

变量项目	变量测量项目		显著性	估计		因素负荷量	组成信度	收敛效度
文里切日	文里侧里切日	Un-std.	S.E.	T-value	P	(Std.)	(CR)	(AVE)
	GP1(地理邻近性的第一个测量项目)	1.000				0.784	0.892	0.734
地理邻近性	GP2(地理邻近性的第二个测量项目)	1.151	0.070	16.522	***	0.880		
	GP3(地理邻近性的第三个测量项目)	1.188	0.071	16.695	***	0.902		
	CP1(认知邻近性的第一个测量项目)	1.000				0.821	0.877	0.704
认知邻近性	CP2(认知邻近性的第二个测量项目)	1.046	0.068	15.502	***	0.810		
	CP3(认知邻近性的第三个测量项目)	1.039	0.064	16.337	***	0.885	784 0.892 880 902 821 0.877 810 885 863 0.811 740 693 766 0.810 877 645 585 0.769 835 744 819 0.824 834 6685 781 0.906 843 884 852 992 0.934 788 857 820 0.845	
	TP1(技术邻近性的第一个测量项目)	1.000				0.863	0.811	0.591
技术邻近性	TP2(技术邻近性的第二个测量项目)	0.871	0.077	11.271	***	0.740		
	TP3(技术邻近性的第三个测量项目)	0.850	0.078	10.898	***	0.693		
	RP1(关系邻近性的第一个测量项目)	1.000				0.766	0.810	0.591
关系邻近性	RP2(关系邻近性的第二个测量项目)	1.316	0.116	11.321	***	0.877		
	RP3((关系邻近性的第三个测量项目))	1.066	0.100	10.626	***	0.645		
合作依赖度	CD2(合作依赖度的第二个测量项目)	1.000				0.585	0.769	0.531
	CD3(合作依赖度的第三个测量项目)	1.325	0.156	8.509	***	0.835		
	CD4(合作依赖度的第四个测量项目)	1.173	0.132	8.879	***	0.744		
	CT2(合作信任度的第二个测量项目)	1.000				0.819	0.824	0.612
合作信任度	CT3(合作信任度的第三个测量项目)	0.944	0.075	12.514	***	0.834		
	CT4(合作信任度的第四个测量项目)	0.633	0.055	11.527	***	0.685		
	CIP2(创新合作绩效的第二个测量项目)	1.000				0.781	0.906	0.707
NIOT A 16 16 24	CIP3(创新合作绩效的第三个测量项目)	1.14	0.071	15.947	***	0.843		
创新合作绩效	CIP4(创新合作绩效的第四个测量项目)	1.153	0.069	16.831	***	0.884		
	CIP6(创新合作绩效的第六个测量项目)	1.060	0.066	16.151	***	0.852		
	GGS1(政府引导支持的第一个测量项目)	1.000				0.992	0.934	0.780
政府引导支持	GGS2(政府引导支持的第二个测量项目)	0.851	0.045	19.050	***	0.788		
	GGS3(政府引导支持的第三个测量项目)	0.915	0.041	22.526	***	0.857		
	TIS1(技术中介服务的第一个测量项目)	1.000				0.820	0.845	0.645
技术中介服务	TIS2(技术中介服务的第二个测量项目)	1.059	0.077	13.734	***	0.829		
	TIS3(技术中介服务的第三个测量项目)	1.059	0.080	13.159	***	0.758		

注:P<0.001为***;N/S代表不支持。

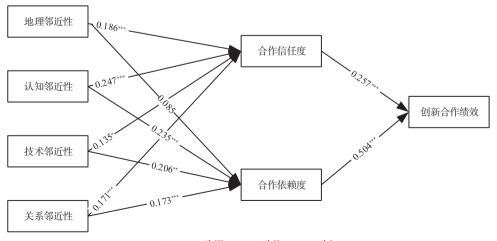
变量项目	收敛效度	技术中介服务	政府引导支持	创新合作绩效	合作依赖度	合作信任度	关系邻近性	技术邻近性	认知邻近性	地理邻近性
技术中介服务	0.645	0.803								
政府引导支持	0.780	0.765	0.883							
创新合作绩效	0.707	0.779	0.725	0.841						
合作依赖度	0.531	0.821	0.705	0.750	0.729					
合作信任度	0.612	0.661	0.630	0.722	0.806	0.782				
关系邻近性	0.591	0.536	0.356	0.468	0.552	0.438	0.769			
技术邻近性	0.591	0.674	0.592	0.642	0.635	0.664	0.465	0.769		
认知邻近性	0.704	0.746	0.614	0.693	0.664	0.654	0.436	0.802	0.839	
地理邻近性	0.734	0.606	0.472	0.537	0.567	0.442	0.377	0.533	0.550	0.857

表4 区别效度表

2. 共同方法变异检验

共同方法变异是指受测者因为采用了相同的方法,导致测量变量之间存在与所研究变量的构念无关的变异,它是调查研究中系统误差的主要影响因素。因此本文采用过程控制的方法,通过提供充分的背景信息、匿名作答等方式来收集数据。此外,文章依据熊红星等(2012)提出的"控制未测单一方法潜因子法"来检测模型的共同变异。首先,构建潜因子的模型 M1。其次,构建无方法潜因子的竞比模型 M2。然后,比较模型 M1与 M2 的主要拟合指标差异: GFI=0.041, CFI=0.032, IFI=0.033, NFI=0.036, RMSEA=0.021。各项拟合指数的变化均小于 0.05, 这表明加入共同方法因子后,模型的拟合指标也没有出现较大的变化,所以测量中不存在明显的共同方法变异。

四、实证结果


(一)模型整体适配度分析

基于结构方程建立 9个潜变量间的全相关模型并结合表 4的区别效度表进行分析后发现,除技术邻近性与关系邻近性之间存在一定相关性 (0.800>0.700),其余各变量之间的相关性关系维持在 0.3~0.7。因此,本文采取不同路径赋值的方法来对模型进行修正。通过采取有放回的抽样选取方式,对 310 个调研数据进行校验,并对相应的模型进行拟合。在 Bollen-Stine Bootstrap 运行 5000 次后,发现模型出现拒绝全文假设的概率 P=0.001,小于 0.05,见表 5。

如图 2 所示,利用 Amos 构建的结构方程模型,对模型结果进行分析,并验证地理邻近性、认知邻近性、技术邻近性及关系邻近性如何影响合作信任度与合作依赖度并对校企创新合作绩效产生影响。

模型拟合度	Chi-Square/DF	GFI	CFI	AGFI	NFI	IFI	RFI	RMSEA
原值	2.11	0.89	0.95	0.86	0.91	0.95	0.89	0.06
统计值	1.33	0.94	0.98	0.89	0.91	0.98	0.93	0.03

表5 修正整体模型适配度指标表

P < 0.001 为**** , P < 0.01 为*** , P < 0.05 为*

图 2 结构方程分析

结合图 2 与表 5 的模型的配适度发现,模型的各项指标符合预期,整体适配度良好。在影响路径方面,在 0.001 的显著水平下,地理邻近性、认知邻近性和关系邻近性对合作信任度产生显著正向影响,其路径系数分别为 0.186,0.247,0.171,假设 H1a,H1b,H1d得到支持;在 0.05 的显著性水平下,技术邻近性对合作信任度产生显著正向影响,假设 H1c得到支持;在 0.001 的显著水平下,认知邻近性、技术邻近性和关系邻近性显著正向影响合作依赖度,其路径系数分别为 0.192,0.192,0.348,假设 H2b,H2c,H2d得到支持。但地理邻近性对合作依赖度没有产生影响,假设 H2a没有得到支持;在 0.001 的显著水平下,合作信任度和合作依赖度正向影响创新合作绩效,其路径系数分别为 0.257,0.504,假设 H3a,H3b得到支持。

(二)中介作用的检验与分析

常用的中介检验方法有层次回归法及 Sobel 检验法,但这些方法常常需要数据符合正态分布,且适用于单中介模型。因此对结构方程的中介鉴定不太准确。结构方程模型不仅在评估模型中介效应的间接影响上更具有优势(Raykov 和 Marcoulides, 2000),而且多重中介模型更是结构方程的典型代表(Holbert 和 Stephenson, 2003),研究者可以较为容易的建立特定简介效应的路径估计的乘积,然后依据乘积公式更为准确地鉴定中介效应是否存在。因而研究主要采用 Amos 软件对二因子的中介模型进行鉴定。本文通过 Amos 26.0 软件的 Bootstrap 功能,在置信区间 95%的水平上,选取样本量 5000,利用 Bias-Corrected 法和 Percentile 法进行计算。同时,依据温忠麟和叶宝娟(2014)的中介鉴定方法,在95%的置信区间判断是否包含 0 来检验中介效应是否显著,结果见表 6。

		₹ ¥ 1	1乘积	Bootstrap				
特定间接效果	estimated	余 数 4	日米代	bias-co	rrected	perce	entile	
		S.E	Z	Lower	Upper	Lower	Upper	
地理邻近性→合作信任度→创新合作绩效	0.018	0.027	0.667	-0.024	0.087	-0.027	0.081	
地理邻近性→合作依赖度→创新合作绩效	0.084	0.038	2.211	0.022	0.175	0.018	0.168	
认知邻近性→合作信任度→创新合作绩效	0.144	0.048	3.000	0.058	0.245	0.048	0.231	
认知邻近性→合作依赖度→创新合作绩效	0.128	0.045	2.844	0.057	0.231	0.058	0.232	
技术邻近性→合作信任度→创新合作绩效	0.144	0.048	3.000	0.058	0.245	0.048	0.231	
技术邻近性→合作依赖度→创新合作绩效	0.128	0.045	2.844	0.057	0.231	0.058	0.232	
关系邻近性→合作信任度→创新合作绩效	0.059	0.038	1.553	0.005	0.166	-0.003	0.147	
关系邻近性→合作依赖度→创新合作绩效	0.120	0.050	2.400	0.039	0.238	0.033	0.228	

表6 中介效应鉴定表

文章构建的理论模型为二因子中介模型,在表6中对合作信任度和合作依赖度在多维邻近性与校企创新合作绩效的关系中的中介作用的显著性进行判断。如表6所示,地理邻近性对校企创新合作绩效的中介路径分为两条:①地理邻近性→合作信任度→创新合作绩效,②地理邻近性→合作依赖度→创新合作绩效。第一条中介路径在 bias-corrected 和 percentile 两种方法计算下得出置信区间为(-0.024,0.087)与(-0.024,0.081),均包含0,证明中介效应不明显。第二条作用路径得出的置信区间为(0.022,0.175)与(0.018,0.168),不包含0,证明中介效应存在。经过同样的分析过程发现,"认知邻近性→合作信任度→创新合作绩效","认知邻近性→合作信任度→创新合作绩效","技术邻近性→合作依赖度→创新合作绩效","技术邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效","关系邻近性→合作依赖度→创新合作绩效"其置信区间均不包含0,即这六条中介路径均存在。因此假设 H4a 部分成立,假设 H4b 成立。

(三)调节作用的检验与分析

运用结构方程分析潜变量之间的交互作用时主要会遇到以下两个挑战:第一,为了识别交互项的影响,必须要将非线性约束应用于固定因子载荷和误差项;第二,尽管构成交互项的每个变量都服从正态分布,但是交互项指标并不服从正态分布。综上,本文采取了仍在被使用的两步法来验证交互项之间的作用,而这种方法不需要采取非线性约束(Ping,1995)。其主要分为三个步骤:第一步,在测量模型中估计线性潜变量的因素负荷量和误差值。第二步,运用这些估计值来计算交互项的因素负荷量和误差项。第三步,将计算出的值指定为交互作用项的因素负荷量及残差。同时为了建立交互项的单一指标,排除多重共线性的问题,将地理邻近性、认知邻近性、技术邻近性、关系邻近性及合作信任度、合作依赖度的进行去中心化,并将其平均值的乘积作为交互项,从而验证调节效应。其中,Y(y)均表示因变量,X,Z,代表除因变量外的其余不同变量的

第i个测量指标, λ_{Ai} 表示A变量的第i个测量项目的非标准化的因子载荷, ε_{Ai} 表示A变量的第i个测量项目的非标准化的残差, $\beta_{A,B}$ 表示A、B变量之间存在联系,XZ为交互项,XX为二次项。具体的计算公式如图 3 所示。

通过上述步骤计算出政府引导支持和技术中介服务所提到的调节作用见表7。研究发现,无论是政府引导支持或是技术中介服务所起的调节作用均显著,且调节效应作用存在(P<0.05),但是政府引导支持正向影响合作依赖度,反向影响合作信任度。技术中介服务正向影响合作信任度,但反向影响合作依赖度,即假设 H5a、H5b、H5c、H5d、H6a、H6b、H6c、H6d均部分成立。

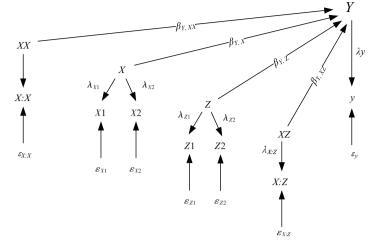


图 3 调节效应图

表7 调节效应分析

自变量项目	中介变量项目	技术中介服务				政府引导支持				
日文里次日	下月 文里 次日	estimated	S.E.	C.R	P	estimated	S.E.	C.R.	P	
나 교 사가 나	合作信任度	0.100	0.044	2.268	*	-0.167	0.053	-3.141	**	
地理邻近性	合作依赖度	-0.072	0.036	-2.018	*	0.146	0.044	3.345	***	
认知邻近性	合作信任度	0.179	0.055	3.237	***	-0.26	0.068	-3.805	***	
	合作依赖度	-0.176	0.051	-3.454	***	0.277	0.065	4.249	***	
技术邻近性	合作信任度	0.226	0.071	3.205	***	-0.295	0.085	-3.457	***	
	合作依赖度	-0.156	0.055	-2.839	**	0.256	0.068	3.779	***	
サスかに 切	合作信任度	0.100	0.031	3.191	***	-0.147	0.036	-4.085	***	
关系邻近性	合作依赖度	-0.05	0.024	-2.099	*	0.160	0.03	5.281	***	

注:P<0.001为***,P<0.01为**,P<0.05为*;N/S代表不支持。

五、结论与建议

(一)研究结论

本文主要以校企合作关系中的合作信任度与合作依赖度作为中介变量,利用 SPSS24.0和 Amos26.0 软件通过实证研究来探究地理邻近性、认知邻近性、技术邻近性和关系邻近性对校企创新合作绩效的影响。研究结果显示:

①认知邻近性、技术邻近性和关系邻近性都显著正向影响合作信任度与合作依赖度。合作信任度和合作依赖度也显著正向影响创新合作绩效。地理邻近性正向影响合作信任度,但对合作依赖度的影响并不显著。这表明,两个合作主体在地理位置上比较靠近的时候,方便双方遇到问题时能够及时线下见面沟通,这种及时有效的沟通方式更加便于隐性知识的传递流动,这些良性互动都有助于提升合作双方的信任度。不过,结论也表明,地理位置上相近并不必然带来依赖,合作方的依赖更多的受其他因素的影响。这些因素主要是认知邻近性、技术邻近性和关系邻近性,它们都显著正向影响合作信任度与合作依赖度,从而提升校企创新合作绩效。

②合作信任度与合作依赖度这两个中介变量的中介作用大体上是显著的。除合作信任度在地理邻近性与校企创新合作绩效之间的中介作用不显著之外,合作信任度和合作依赖度在其他自变量与因变量之间的中介作用是明显的。其原因可能是通讯方式的多样、交通的便捷等多因素的推动,使得远距离交流变得更为便捷,这在一定程度上削弱了地理邻近性对于合作双方的影响。

③政府引导支持和技术中介服务这两个调节变量的调节作用是显著的。政府引导支持正向调节了地理邻近性、认知邻近性、技术邻近性、关系邻近性与合作依赖度的关系,技术中介服务则对其产生负面影响。而技术中介服务正向调节了地理邻近性、认知邻近性、技术邻近性、关系邻近性与合作信任度之间的关系,政府引导支持对其产生负面影响。两者在提升校企创新合作绩效方面起到重要调节作用。这可能是由于市场中

第三方即技术中介服务具有完备的信息、经验,而且受到市场需求及自身对利益需求的影响,技术中介方的信息丰富且更新速度快,可及时为校企方提供新的资源合作方,减少了企业方对于某一特定高校的需求与依赖,因而技术中介服务负向调节了多维邻近性与合作依赖度之间的关系。而政府方更多的是以以政府公信力及其权威地位为担保促使双方建立合作关系,在这种情境下,合作双方更多的是信任政府,从而降低了对合作方的信任度,因而政府引导支持负向调节了多维邻近性对合作信任度之间的关系。

(二)实践意义

本文提出校企合作的参与各方都可以在各自的层面做一些努力,以提升校企创新合作绩效,支持高校科技成果转化和企业的发展,推进科技强国的进程。

①企业方在选择自己的创新合作对象时,尽量选择地理位置相近的高校。当然,如果在技术上和认知上不够匹配的话,可以不过分拘束于地理位置的限制。企业应当充分评估自身的创新实力和具体需求,尽量选择与自身技术领域和技术能力相匹配的高校,在此基础上如果有选择的话,可以选择与主要高管具有一定社会关系的高校进行合作。企业在自身信息有限的情况下,也可以积极寻求政府和技术中介等第三方主体的帮助,以便于降低自身搜寻信息的难度,拥有更多选择空间。在初步接触谈判过程中,注重考察合作对象的认知是否与自身相似。一旦确立合作关系之后,企业应该明确自身需求,坦诚沟通,做好进度把控,维护良好合作关系。

②高校方可以经常召开一些最新科研成果发布会、介绍会,或邀请相关领域的企业一起参加技术论坛,技术转移部门可以加强与当地政府和技术中介的合作交流,让更多企业了解自身的技术领域和研发实力,以寻找到匹配的合作企业。在初步谈判过程中,要向企业说明本高校内的制度安排和时间作息等,做到最大程度的透明化,增强信任度。在合作过程中更要注意沟通的及时和有效性,注意工作效率,尽可能不要拖延进度。

③政府方在充当技术红娘的时候,要注意拿捏尺度,过于积极的话会给校企双方造成压力,也有可能发生"拉郎配"的不适当合作关系,而过于消极的话,又起不到技术红娘的作用。因此,政府有关部门需要增强技术创新方面的行政管理能力,善用、巧用行政影响力,为创新合作双方牵线搭桥。

④技术中介方是民间的技术红娘,对自己在技术市场上的作用要更加自信。在实际走访中发现一些企业更多承认政府引导支持对于双方合作的有利影响,对技术中介这一第三方的存在作用并不了解或对其作用并不明确。这表明技术中介要广泛得到认可,还需要做更多的努力在自身建设上下功夫,并应当在市场中积极发挥自己的作用。政府与技术中介均需积极的参与到校企创新合作的过程中去。

(三)理论贡献

首先,本文丰富了多维邻近性对校企创新合作绩效的影响研究。已有研究表明信任与依赖是两种重要组织间关系,会通过不同的机制对创新合作绩效产生影响。然而,现有的多维邻近性研究主要集中于直接探究多维邻近性对创新合作绩效的影响,而忽略了内在机制。因此,本文通过实地访谈、数据分析等方法提出企业方最为关注的4个邻近性,并进一步探究了多维邻近性对校企创新合作绩效影响的内在机制。其次,本文考察了校企创新合作过程中客观存在的政府与技术中介的角色,揭示了其在多维邻近性与合作信任度、合作依赖度的关系中起到的不同调节作用,进一步弥补了先前研究的不足。

(四)研究局限及展望

研究仍然存在一些不足之处,需要进一步探讨。首先,本文主要基于对企业的调研及有关专利数据结果出发,选取了四个主要的多维邻近性指标。但是多维邻近性的涵盖范围较广,其他多维邻近性也可能对合作信任度和合作依赖度产生影响,后续有待进一步的探讨。其次,本文在选取技术邻近性指标时,虽然对技术邻近性有数据的处理,但主要还是基于企业的主观判断。因此对于技术邻近性这一指标有待进一步的完善。

参考文献

- [1] 曹兴, 宋长江, 2017. 认知邻近性、地理邻近性对双元创新影响的实证研究[J]. 中国软科学, 4: 120-131.
- [2] 陈蕊, 2020. 关系邻近性视角下的海外华商与侨乡经济——以改革开放后广东潮汕地区为例[J]. 华侨华人历史研究, 2: 53-64.
- [3] 高长元, 张晓星, 张树臣, 2021. 多维邻近性对跨界联盟协同创新的影响研究——基于人工智能合作专利的数据分析 [J]. 科学学与科学技术管理, 42(5): 100-117.
- [4] 郭熙保, 龚广祥, 2021. 家庭农场农业新技术采用行为的空间依赖性研究[J]. 社会科学战线, 3: 93-100, 281.

[5]郭元源,池仁勇,段姗,2014.科技中介功能、网络位置与产业集群绩效——基于浙江省典型产业集群的实证研究 [J].科学学研究,32(6):841-851,872.

- [6] 洪名勇, 2017. 信任、空间距离与农地流转契约选择研究[J]. 江西财经大学学报, 1: 81-90.
- [7] 胡杨,李郇,2017. 多维邻近性对产学研合作创新的影响——广州市高新技术企业的案例分析[J]. 地理研究,36(6):695-706.
- [8] 李丹, 杨建君, 2018. 关系状态、信任、创新模式与合作创新绩效[J]. 科研管理, 39(6): 103-111.
- [9] 李琳, 雒道政, 2013. 多维邻近性与创新: 西方研究回顾与展望[J]. 经济地理, 33(6): 1-7, 41.
- [10] 李玲, 2011. 技术创新网络中企业间依赖、企业开放度对合作绩效的影响[J]. 南开管理评论, 14(4): 16-24.
- [11] 李婷婷,李艳军,刘瑞涵,2016.心理距离情境对农户农资购买决策中初始信任的影响——信息处理模式的中介机制 [J].管理学报,13(11):1690-1701.
- [12] 梁玲玲, 石家宇, 路玉莹, 2021. 技术中介在技术转移链条中的价值创造及能力提升[J]. 中国高校科技, 7: 93-96.
- [13] 刘凤朝, 邬德林, 马荣康, 2015. 专利技术许可对企业创新产出的影响研究——三种邻近性的调节作用[J]. 科研管理, 36(4): 91-100.
- [14] 吕文晶, 陈劲, 汪欢吉, 2017. 组织间依赖研究述评与展望[J]. 外国经济与管理, 39(2): 72-85.
- [15] 马海涛,周春山,刘逸,2012. 地理、网络与信任:金融危机背景下的生产网络演化[J]. 地理研究,31(6): 1057-1065
- [16] 宁东玲, 2011. 知识吸收能力对信息系统应用效果影响的实证研究[J]. 情报科学, 29(5): 718-722.
- [17] 孙国强, 石文萍, 于燕琴, 等, 2019. 技术权力、组织间信任与合作行为: 基于沁水煤层气网络的领导-追随行为研究 [J]. 南开管理评论, 22(1): 87-97.
- [18] 王沛,刘雨婷,梁雅君,等,2020.关系认知与善意认知对大学生人际信任的影响[J].心理发展与教育,36(4):406-413
- [19] 王永贵, 赵春霞, 赵宏文, 2017. 算计性依赖、关系性依赖和供应商创新能力的关系研究[J]. 南开管理评论, 20(3): 4-14.
- [20] 温忠麟, 叶宝娟, 2014. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 22(5): 731-745.
- [21] 翁艺丹, 2016. 多维邻近性视角下广州生物医药产业创新网络结构研究[D]. 广州: 广州大学.
- [22] 肖振鑫,高山行,2015. 技术驱动、政府推动与企业探索性创新——基于产业竞争范式和制度理论的双重视角[J]. 科学学与科学技术管理,36(3):46-55.
- [23] 熊红星, 张璟, 叶宝娟, 等, 2012. 共同方法变异的影响及其统计控制途径的模型分析[J]. 心理科学进展, 20(5): 757-769.
- [24] 熊捷, 孙道银, 2017. 企业社会资本、技术知识获取与产品创新绩效关系研究[J]. 管理评论, 29(5): 23-39.
- [25] 杨扬,谢佳松,林建浩,等,2020.信任网络、资金流动与区域发展差距[J]. 系统工程理论与实践,40(9):2222-2235.
- [26] 殷存毅,刘婧玥,2019. 所有制区隔与跨域合作创新——基于2005-2015 京、沪、深三大城市专利数据分析[J]. 中国 软科学,1:82-97.
- [27] 尹江海,程培堽,2021.校企合作中的信息不对称及治理机制设计[J]. 江苏高教,7:50-55.
- [28] 于贵芳,温珂,方新,2020.信任水平、合作关系与创新行为:社会交换理论视角下公立科研机构创新行为的影响因素研究[J].科学学与科学技术管理,41(2):78-93.
- [29] 曾伏娥, 刘红翠, 王长征, 2016. 制度距离、组织认同与企业机会主义行为研究[J]. 管理学报, 13(2): 203-211.
- [30] 张涵, 杨晓昕, 2021. "一带一路"倡议如何影响城市创新集聚方向——来自我国地级市的经验证据[J]. 国际贸易问题, 5: 127-142.
- [31] 张慧,周小虎,高照龙,2021. 揭开信任的面纱——基于认知和情感视角的信任双中介模型[J]. 科技管理研究,41 (9):154-160.
- [32] 张省, 2017. 地理邻近促进产学研协同创新吗? ——基于多维邻近整合的视角[J]. 人文地理, 32(4): 102-107.
- [33] 赵炎, 叶舟, 韩笑, 2021. 创新网络技术多元化、知识基础与企业创新绩效[J]. 科学学研究, 37(1): 1-23.
- [34] 赵宇楠, 程震霞, 井润田, 2019. 平台组织交互设计及演化机制探究[J]. 管理科学, 32(3): 3-15.
- [35] CHULUUN T, PREVOST A, UPADHYAY A, 2017. Firm network structure and innovation [J]. Journal of Corporate Finance, 44: 193-214.
- [36] DALLASEGA P, SARKIS J, 2018. Understanding greening supply chains: Proximity analysis can help [J]. Resources, Conservation and Recycling, 139: 76-77.
- [37] DIESTRE L, RAJAGOPALAN N, 2012. Are all 'sharks' dangerous? New biotechnology ventures and partner selection in R&D alliances[J]. Strategic Management Journal, 33(10): 1115-1134.
- [38] FERNÁNDEZ A, FERRÁNDIZ E, LEÓN M D 2021. Are organizational and economic proximity driving factors of scientific collaboration? Evidence from Spanish universities, 2001—2010[J]. Scientometrics, 126(1): 579-602.

- [39] GUAN J C, YAN Y, 2016. Technological proximity and recombinative innovation in the alternative energy field [J]. Research Policy, 45(7): 1460-1473.
- [40] GUO M, YANG N, WANG J, et al, 2021. Multi-dimensional proximity and network stability: The moderating role of network cohesion[J]. Scientometrics, 126(4): 3471-3499.
- [41] HEMMERT M, BSTIELER L, OKAMURO H, 2014. Bridging the cultural divide: Trust formation in university-industry research collaborations in the US, Japan, and South Korea[J]. Technovation, 34(10): 605-616.
- [42] HERINGA P W, HORLINGS E, ZOUWEN M V D, et al, 2014. How do dimensions of proximity relate to the outcomes of collaboration? A survey of knowledge-intensive networks in the Dutch water sector [J]. Economics of Innovation & New Technology, 23(7-8): 689-716.
- [43] HOLBERT R L, STEPHENSON M T, 2003. The importance of indirect effects in media effects research: Testing for mediation in structural equation modeling[J]. Journal of Broadcasting & Electronic Media, 47(4): 556-572.
- [44] HUO B, FLYNN B B, ZHAO X, 2017. Supply chain power configurations and their relationship with performance [J]. Journal of Supply Chain Management, 53(2): 88-111.
- [45] JEAN R-J B, CHIOU J-S, SINKOVICS R R, 2016. Interpartner learning, dependence asymmetry and radical innovation in customer-supplier relationships [J]. Journal of Business & Industrial Marketing, 31(6): 732-742.
- [46] KNOBEN J, OERLEMANS L A G, 2006. Proximity and inter-organizational collaboration: A literature review [J]. International Journal of Management Reviews, 8(2): 71-89.
- [47] LIPPI BRUNI M, MAMMI I, 2017. Spatial effects in hospital expenditures: A district level analysis [J]. Health Economics, 26(S2): 63-77.
- [48] LIU Y, DENG P, WEI J, et al. 2021. How to gain from international R&D alliances? A mutual dependence logic [J]. Journal of Business Research, 135: 800-815.
- [49] LIU Y, YING Y, WU X, 2017. Catch-up through collaborative innovation: Evidence from China [J]. Thunderbird International Business Review, 59(4): 533-545.
- [50] MOLINA-MORALES F X, GARCÍA-VILLAVERDE P M, PARRA-REQUENA G, 2014. Geographical and cognitive proximity effects on innovation performance in SMEs: A way through knowledge acquisition [J]. International Entrepreneurship and Management Journal, 10(2): 231-251.
- [51] PARKINSON C, KLEINBAUM A M, WHEATLEY T, 2018. Similar neural responses predict friendship [J]. Nature Communications, 9(1): 332.
- [52] PETRUZZELLI A M, 2011. The impact of technological relatedness, prior ties, and geographical distance on university-industry collaborations: A joint-patent analysis[J]. Technovation, 31(7): 309-319.
- [53] PING R A, 1995. A parsimonious estimating technique for interaction and quadratic latent variables [J]. Journal of Marketing Research, 32(3): 336-347.
- [54] RAYKOV T, MARCOULIDES G A, 2000. A method for comparing completely standardized solutions in multiple groups [J]. Structural Equation Modeling: A Multidisciplinary Journal, 7(2): 292-308.
- [55] ROLDÁN BRAVO M I, RUIZ MORENO A, LLORENS-MONTES F J, 2016. Supply network-enabled innovations. An analysis based on dependence and complementarity of capabilities [J]. Supply Chain Management: An International Journal, 21(5): 642-660.
- [56] RUIZ-ORTEGA M J, PARRA-REQUENA G, GARCÍA-VILLAVERDE P M, 2021. From entrepreneurial orientation to sustainability orientation: The role of cognitive proximity in companies in tourist destinations[J]. Tourism Management, 84: 104265.
- [57] SUN Y, LIU K, 2016. Proximity effect, preferential attachment and path dependence in inter-regional network: A case of China's technology transaction[J]. Scientometrics, 108(1): 201-220.
- [58] YANG W, ZHANG Y, ZHOU Y, et al, 2021. Performance effects of trust-dependence congruence: The mediating role of relational behaviors[J]. Journal of Business Research, 129: 341-350.
- [59] YANG Z, CHEN Z, LING J, 2011. When do formal control and trust matter? A context-based analysis of the effects on marketing channel relationships in China[J]. Industrial Marketing Management, 40(1): 86-96.

Research on the Influence of Multidimensional Proximity on the Performance of School-enterprise Innovation Cooperation

Liang Lingling, Lu Yuying

(School of Economics and Management, Shanghai Institute of Technology, Shanghai 201418, China)

Abstract: In an era of unprecedented changes, strengthening school-enterprise innovation cooperation and promoting the transformation of scientific and technological achievements are the keys to enhancing the country's innovation strength and enhancing the country's scientific and technological transformation. However, the overall performance of school-enterprise innovation cooperation in China is not optimistic, and how to improve its overall performance has become an urgent problem to be solved. Moreover, multi-dimensional proximity is a commonly used pre-variables to measure the performance of school-enterprise innovation cooperation, and its influence relationship is constantly changing with the changes of the external environment. Therefore, based on theoretical analysis and case investigation, a model of the relationship between the connotative dimensions of multi-dimensional proximity and its impact on the performance of school-enterprise innovation cooperation were constructed, and the conceptual model was explored and verified through questionnaire surveys and other methods combined with structural equations. The findings indicate that cognition, technology and relationship proximity positively affect the performance of school-enterprise innovation cooperation through the two intermediaries of cooperation trust and cooperation dependence, but the role of geographical proximity is declining. Meanwhile, the regulatory role of government guidance support and technology intermediary service is complementary and significant.

Keywords: proximity; innovative cooperation; school-enterprise; cooperation trust; cooperation dependence;