引用格式: 李娅, 刘博文. 聚集还是分散: 城市空间结构对创新要素配置的影响研究——来自 36 个青年发展型试点城市的证据[J]. 技术经济, 2025, 44(10): 1-17.

Li Ya, Liu Bowen. Agglomeration or dispersion? How urban spatial structure shapes innovation allocation in China's youth development pilot cities [J]. Journal of Technology Economics, 2025, 44(10): 1-17.

教育科技人才一体化主题专栏

聚集还是分散:城市空间结构对创新要素 配置的影响研究

——来自36个青年发展型试点城市的证据

李 娅. 刘博文

(云南大学经济学院, 昆明 650500)

摘 要:青年发展型城市的崛起源于中国城市发展普遍性问题与青年发展特殊性问题的交汇。城市空间结构的聚集或分散直接影响青年人才的集聚和创新要素的配置效率。基于 2008—2022 年的 LandScan 高分辨率全球人口分布数据(LandScan Global Population Database),实证分析青年发展型城市的空间结构对创新要素错配的影响。研究发现,青年发展型城市的空间分散程度位于创新要素错配 U 型结构的左侧,且有进一步聚集的趋势。要素动态流动机制显示,青年发展型城市的空间结构通过创新资本和创新人员的双向流动缓解了创新要素错配,特别是创新人员的流动对周边城市有利。静态机制表明,要素的创新性配置环境通过缓解青年发展型城市聚集趋势下的创新资本错配,进一步优化了资源配置。研究结论支持在青年发展型城市规划中采用合理的空间分散策略,以优化创新要素配置,并提出了相应的政策建议。

关键词:青年发展型城市;创新要素配置;LandScan

中图分类号: F293.1 文献标志码: A 文章编号: 1002-980X(2025)10-0001-17

DOI: 10. 12404/j. issn. 1002-980X. J24090712

一、引言

合理的城市空间结构布局是充分释放创新要素配置潜能的必要前提。资源的稀缺性和逐利性致使创新资源要素呈现出向城市中经济发展水平相对较高的区域集聚,使得区域创新要素呈现出非平衡的城市空间格局。创新活动以现实的经济活动为载体,空间结构的优化为创新活动提供高质量的共享、匹配与知识溢出途径。创新活动汇集大量生产资料、多样性人才及公共基础设施等投入,是政产学研服等密切合作的结果。这不仅是企业的产物,更是城市的产物。如何从城市空间结构维度优化创新要素的布局,缩小区域创新发展差距,促进区域创新协调发展,是一个亟待研究的理论和现实课题。

根据以往的发展实践,多中心空间结构作为现代城市规划和发展的重要理念,旨在通过建立多个功能中心来缓解单中心城市的压力,提高城市系统的整体效率和可持续性。多中心城市发展模式被视为促进经济发展的良方。然而,从具体的实践效果看,以多中心为指导的城市和区域发展结果不尽相同,何种空间结构更有利于经济发展的结论尚不明确。多中心结构在集聚经济和空间挤出效应的平衡中有助于实现最佳的城市规模,打破城市间的行政和市场壁垒,促进不同层级城市间的产业分工与功能互补,从而提升生产效

收稿日期: 2024-09-07

基金项目: 国家社会科学基金"数智技术非均衡扩散对我国制造业生产网络的结构冲击与应对策略研究"(25BJY054);云南省社科规划重点项目"新质生产力赋能现代化产业体系研究"(ZX2025ZD10)

作者简介: 李娅(1976—),博士,云南大学经济学院教授,博士研究生导师,研究方向:结构转型与区域发展;刘博文(2000—),云南大学经济学院硕士研究生,研究方向:空间经济与空间计量分析。

率。因此,相较于单中心发展模式,多中心空间结构更容易发挥空间的正外部性^[1]。而过早形成多中心结构可能在中心城市规模尚未达到最优水平时阻碍集聚经济的发展,反而损害区域生产效率。例如,多中心空间结构的地区在通勤效率方面明显落后于单中心结构的地区,这无疑会抑制知识和技术的焦虑与溢出^[2]。尽管多中心结构在缓解中心城市压力、促进区域协调发展方面具有显著优势,但其实施效果需结合具体城市发展的实际情况进行评估和调整。城市空间结构与经济效率,尤其是创新效率之间的关系还需要更多实证探究的支撑。

"青年优先发展"逐步成为当下城市发展新阶段的重要话题。2022 年 4 月,中央宣传部、国家民委和共 青团中央等 17 部门联合印发《关于开展青年发展型城市建设试点的意见》,明确了"青年发展型城市"的建 设内涵,目标是为了推动青年高质量发展和城市高质量发展的双向互促,统筹引导规范各地自行探索的青 年发展型城市建设,将青年发展和城市发展纳入一体两面。以辽宁省为例,2024年发布《关于建设青年发展 型省份的若干措施》和《关于开展辽宁省青年发展型城市建设的意见》①,相关政策文件旨在增强创新要素集 聚和资源配置效率.推动城市与青年协同发展[3]。试点城市基于国家及地方政府的相关文件通过一系列政 策措施吸引青年和创新型人才。例如、《关于深化人才发展体制机制改革的意见》和《国家中长期人才发展 规划纲要(2010—2020年)》等明确要求各地加强高层次创新人才引进。地方政府则结合实际出台具体政 策,如北京市"海聚工程"、深圳市"人才安居工程"和成都市的创新创业支持政策等,通过提供税收优惠、科 研资金、住房保障及创业支持,营造了有利于青年创新人才发展的环境。为落实和有效转化上述相关政策, 建设青年发展型城市需要兼顾城市空间结构优化和创新要素合理配置, 应考虑知识转化为商业价值的结构 和复杂性,强调劳动力、资本和技能等资源在价值创造中的作用[4]。因此,探究青年发展型城市结构上的优 化以发挥青年人才加持下创新要素的配置成为本文的主要工作。本文的研究问题是青年发展型城市的空 间结构对创新要素配置是否具有影响?如果有影响,内在机制是什么,以及青年发展型城市的空间结构对 创新要素配置的影响模式与一般城市有没有本质的差异。对此,本文从以下方面探索:一是,测算城市创新 要素错配程度,考察空间结构对创新要素错配的影响,为规划合理的城市空间结构和构建创新高地提供启 示:二是,结合青年发展型城市建设背景,探讨青年发展型城市如何通过合理的空间结构充分发挥青年人才 的集聚效应以优化创新要素配置。本文的边际贡献在于:第一,结合青年发展型城市需求,探讨何种空间结 构能更有效配置创新资源,支持青年发展和创新创业;第二,聚焦创新要素错配,从城市空间结构角度分析 其影响,特别关注青年发展型城市建设;第三,通过城市区域要素动态流动视角及要素创新性配置环境视 角,凸显区域间创新要素流动的资源再配置效应,探究创新要素配置差异。

二、文献综述与研究假设

(一)文献综述

青年发展型城市本质上来看是一个"空间概念",建设的着力点就是要优化青年优先发展的规划环境、教育环境、就业环境、居住环境、生活环境等,其缘起于我国城市发展的普遍性问题和青年发展存在的特殊性问题的交叉^[5]。城市经济学的理论表明,从城市的形成到其发展过程,始终围绕着"空间"的分布、集聚与流动展开。城市通过空间集聚效应实现经济规模扩大和资源利用效率提升,同时通过空间流动效应促进人员、信息与资本的动态配置,增强城市活力。城市发展中的问题,如交通拥堵、住房紧张、功能失衡等,根源在于空间资源的错配与竞争,而解决这些问题的关键在于优化城市内部空间结构。此外,城市发展的目标在于通过高效的空间组织实现经济效益与社会效益的最大化,具体体现在功能区划调整、多中心化建设、紧凑型发展等空间优化策略上。因此,无论是资源分配、政策制定,还是治理规划,城市发展的核心逻辑始终是一个围绕"空间"进行的动态调整与优化过程。这充分体现了城市发展作为空间概念的本质特征。同时,人才等创新要素的配置与流动本质上依托于"空间"这一核心载体展开,其效率和模式受到空间条件的深刻影响。聚集经济和空间经济学的理论表明:第一,创新要素的高效集聚依赖于地理空间上的集聚效应,集中

① 原文参考自辽宁省人民政府网站。

分布于科技园区、创新中心等特定功能区,这些空间载体通过降低交易成本、增强知识溢出效应和提升协同效率,为创新要素的优化配置提供物理基础。第二,创新要素的流动受空间结构的制约,交通网络和信息网络的布局及城市空间的多中心化程度决定了创新资源在区域内外的流动效率。第三,创新要素的扩散和技术传播需要依赖空间载体,区域间的可达性与连接性直接影响创新要素的扩散路径与范围。此外,空间的差异性决定了创新要素的分布模式,核心区域往往集聚高端创新资源,而边缘区域则承载低端资源,这种空间梯度进一步强化了要素对空间的依赖性。

现有研究主要从两个方面对青年发展型城市开展探讨。一方面是青年发展型城市概念内涵的解释及政策实践探索的规范性。孙久文和蒋治^[6]通过结合青年群体的边界界定,阐述城市和青年高质量发展对青年发展型城市的赋能驱动作用,明确青年发展型城市的科学内涵,为青年发展型城市发展提出战略构想。另有学者从城市促进青年发展角度,以北京、上海和天津超大城市为例,构建城市发展综合评价指标,探究城市发展水平与青年幸福获得感之间的差异关系^[7]。另一方面是针对青年发展型城市指标体系的构建。郑德高等^[8]梳理青年发展型城市建设的脉络及内涵,从需求视角和供给视角,构建聚焦青年乐居、立业、活力和有为4个维度的城市规划建设评价体系。聂伟和余燕琪^[9]以深圳市为特定研究对象,在城市现有的青年发展型城市建设情况的基础上,认为应当从城市建设的不同维度优化青年与城市之间的耦合程度,并进一步推进青年发展型城市的整体性建设^[9]。现有文献为青年发展型城市的研究提供有益支撑,但基于评价体系和内涵解释的论述忽略了城市空间结构演变下青年发展路径的研究。

学界对城市结构中影响创新要素结构的主要途径和差异的探讨,包括以下三种观点:第一,从经济效率 角度,单中心结构通过集聚效应提升要素流通效率,减少信息外溢成本,企业间通过"规模互借"促进协同效 应。相较之下,多中心结构的城市布局通过推动发展次中心,优化区域经济绩效[10],提升工业智能化和数字 化水平,吸引高科技企业和人才聚集[11]。第二,从产业角度,分散的城市结构有助于将科教资源扩散至次中 心,提升创新要素的匹配效率。随着高校和科研院所的集聚,生产性服务业向次中心聚集[12],从而推动创新 要素的有效利用。不同类型企业对空间的布局偏好因人口密度和功能属性而异,这进一步加快了产业在次 中心的聚集与创新。第三.集聚经济与集聚不经济的平衡。单中心结构因资源高度集中和高效基础设施促 进知识溢出和信息交流,提升创新要素配置效率,但可能抑制周边地区的发展[13]。多中心结构则通过降低 次中心的创新要素配置成本、促进区域创新资源共享,缓解中心区域的过度集聚问题。但分散结构由于地 理距离较大,可能削弱知识的传播与创新效率。此外,区域一体化的发展加速了资源与要素流动,多中心结 构在提升资源共享方面显示了优势,但较长的通勤流动会因为信息损失影响效率[14]。将研究对象聚焦在青 年发展型城市当中,已有研究多集中于政策层面的讨论。张可和屈晓婷[15]研究揭示青年发展型城市在创新 生态系统与青年发展耦合方面的不足,特别是青年人才集聚效应在青年发展型城市当中并未体现。对此, 陆杰华等[16]分析现阶段青年人口社会经济特征,认为其原因是青年个人发展需求与国家和城市发展需求不 尽一致,青年人口红利并未得到充分释放,并从理论层面论述解决的思路和路径,但未对实际的现实结构下 的可行性进行检验。在差异化城市区位的现实因素下,已有研究也仅针对差异的存在进行案例分析和理论 论述。以中部城市为例,从政策和时间路径强调青年人才在中部城市高质量发展当中的重要性,指出中部 城市推进产业迭代升级,推动人才链与创新、产业和资金链融合的根本问题是区域经济发展路径的问题,最 为根本的是战略性人才问题[17]。青年发展型城市是贯彻以人为核心的兼顾新型城镇化战略和城市高质量 发展的重要力量,在流动方向上,青年人口倾向于向城市群核心城市及省会城市流动[18]。

现有的研究大多集中于政策和实践路径的理论分析,在以下两个方面仍有待补充:一方面,已有文献指出青年是城市创新基础,以及城市创新成果与市场未能实现高效对接,但忽略了在充分发挥青年人才主观能动的条件下对创新要素配置方式的探究;另一方面,在强调青年人才集聚效应发挥不足的同时并未从城市空间结构上给出青年发展型城市的青年人才区域发展的结构导向。

(二)机理分析与研究假设

1. 青年发展型城市空间结构与创新要素配置

青年发展型城市旨在通过吸引和聚集青年人才与企业,推动城市的经济和社会发展。在这一过程中,

城市空间结构的设计和优化成为决定创新配置效率的关键因素。具体而言,青年发展型城市通过建设具有创意、创新和创业("三创")环境的空间结构,能够更有效地促进创新资源的集聚与流动,从而提高创新效率,增强城市的经济韧性并提升其竞争力。一是,吸引青年人才和企业是青年发展型城市成功的基础。通过提供创新和创业的支持环境,这些城市能够吸引高素质的青年人才,进而形成积极的创新生态系统,推动经济社会发展。这一过程受城市空间结构的显著影响,合理的空间结构有助于资源的高效配置和人才的集聚,从而增强城市的创新能力和竞争力。通过优化空间布局,青年发展型城市能够有效地引导创新要素的流动和利用,促进城市的高质量发展。二是,青年发展型城市通过有效的空间结构布局,推动产业结构的优化和升级。具体来说,城市通过优化空间布局引导传统产业向高科技产业转移,实现资源的再分配和优化利用。这不仅能够提升产业的创新能力,还能推动城市整体创新水平的提高。此外,城市应注重创造一个有利于青年创新和创业的环境,通过吸引和培养青年人才增强城市的创新活力和经济韧性。这样的空间结构与创新环境相辅相成,进一步提升城市的经济竞争力。通过优化空间结构,青年发展型城市能够促进创新要素的高效流动和合理配置,提供更多创新机会与资源支持。

基于此,本文提出假设1:

青年发展型城市的空间结构对创新要素配置具有显著影响(H1)。

2. 青年发展型城市创新要素流动与配置

高素质青年人才的流动带来了知识、技能和技术的扩散,促进了不同地区之间的知识共享和技术传播,推动了资源的合理配置和优化。与此同时,青年发展型城市对于创新人员要素的流动促进了创新资本要素的流动,进一步推动创新生态的完善。然而,由于创新人员要素和创新资本要素的流动效率存在差异,现阶段创新要素之间的目标和利益不一致,创新资本要素的流动往往比创新人员要素的流动更为滞后,这可能导致创新资本要素集聚无法满足周边城市的需求,从而加剧创新要素市场的分割,影响周边城市的创新发展[19]。因此,青年发展型城市的建设能够提高城市的创新能力和经济活力[20],而合理的城市空间结构则能够有效打破城市内部创新要素的堆砌和分散状况,形成一个支持青年发挥创新能力的生态系统。通过优化城市空间布局,这些城市能够有效促进创新要素的流动,提升创新效率,并为经济的高质量发展提供强有力的支撑。但需要注意的是,青年发展型城市的特殊性导致青年人才的集聚规模过大或同质化现象存在,创新人员要素在有限的支持城市创新的资源禀赋当中或将产生更为激烈的内部竞争,进而导致人才拥挤和人力资源浪费。

基于此,本文提出假设2:

青年发展型空间结构可以促进区域创新要素的双向流动改变城市创新要素错配程度,但这种影响由于创新要素的不同特征而表现出差异性(H2)。

3. 青年发展型城市要素创新性环境与配置

城市的空间结构可以通过分散和重组创新资源及区域之间的创新要素流动,促进城市不同中心区域的均衡发展,这一过程的有效性依赖于要素的创新性配置环境。未来城市创新要素的高效配置依赖于高水平教育培养的高素质劳动者,这些劳动者通过使用数字化、智能化的工具作用于新兴产业和未来产业。要素的创新性配置环境实质是数据、技术、信息和人才等一系列要素的组合过程,过程当中要素组合方式优化、配置效率提升,尽可能扩大资源要素的协同范围[21],其中青年人才具备更具时代特征的主观能动性而占据主要地位。青年人才是创新人员要素当中最具活力和潜力的组成部分,具备高素质、创新能力、灵活适应性和数字技术应用能力,其需要青年发展型城市当中要素创新性配置下的创新资源、环境和保障,以此激发自身的创新创业活力,进而缓解城市创新资本要素的错配。然而,当前青年发展型城市在创新人员要素环境方面存在发展中的"困难",主要表现在:首先,青年人才集聚规模不足。尽管各地城市积极吸引青年人才,但在有效利用这些人才和发挥其集聚效应方面的重视不足。城市的吸引力和黏性较弱,人才集聚的正向效应未能充分释放。其次,经济发展水平存在差异。部分城市由于经济发展水平的局限,无法提供一线或二线城市所具备的经济补贴和公共服务,导致其吸引力不足。与此同时,这些城市往往缺乏对自身独特优势的认知,难以留住青年人才,集聚效应未能有效发挥。最后,人才过度集聚与同质化问题。城市通过放宽落

户政策、提供补贴、完善住房保障和就业指导等措施吸引青年人才,但未能考虑到城市的承载能力、产业分工及发展定位,导致人才的过度集聚和同质化。

基于此,本文提出假设3:

城市的空间结构可以通过分散和重组创新资源及区域之间的创新要素流动,并且该过程受要素的创新性配置环境影响;要素创新性配置环境可以提升青年发展型城市的创新要素配置水平(H3)。

三、研究设计

(一)模型设计

根据前文的理论分析和研究假设,重点识别城市多中心空间结构对创新要素错配的影响,设定如式(1) 所示的双向固定效应模型。

$$IM_{ii} = \alpha + \beta_1 poly_{ii} + \beta_2 poly_{ii}^2 + \sum_i \delta_i X_{iii} + \mu_i + \eta_i + \varepsilon_{ii}$$
 (1)

其中: i 和 t 为城市和年份; α 为常数项; β_1 和 β_2 分别为城市多中心程度一次项和二次项的系数; IM_u 为城市创新要素错配指数; $poly_u$ 为城市的多中心程度; X_{ju} 为控制变量; μ_i 为个体固定效应; η_i 为时间固定效应; ε_u 为随机误差项。

(二)城市多中心指数与创新资源配置效率的测算

1. 城市多中心指数

如前文所述,城市多中心结构包括形态多中心和功能多中心。本文主要是通过对人口、就业及文化等方面考虑相对独立的中心在城市空间上的分布,即形态多中心角度突出城市各中心的重要性^[22-23]。本文使用人口的空间分布特征反映城市的空间结构,人口是经济活动的主体,其分布可以直观反映城市空间特征。

具体而言,参考 Li 和 Liu^[24]的方法,利用 LandScan 全球人口分布数据,通过探索性空间数据分析 (ESDA)识别样本中地级市城市的中心。通过计算局部莫兰指数,捕捉由不同人口密度的 LandScan 栅格构成的栅格簇,即通过比较每个栅格的人口数值,描述其周围显著相似值栅格之间的集聚程度,并通过保留莫兰指数显著的栅格簇筛选出可能成为中心的地理单元。其中,规模最大的称为主中心,规模较小的称为次中心。对于次中心设定最小标准为在总人数大于 10 万的基础上包含三个及以上满足高高集聚特征的栅格。多中心结构通过次中心总人口(pop_{subcenter})占全部城市中心人口的比重来衡量。该比值越小,城市空间结构越趋向于集中,反之则更为发散。

$$poly = \frac{pop_{\text{subcenter}}}{pop_{\text{subcenter}} + pop_{\text{maincenter}}}$$
 (2)

其中:pop_{maincenter} 为城市主中心人口数。

2. 城市创新要素错配

参考陈永伟和胡伟民^[25]的做法,将资源错配和效率损失纳入增长核算框架中,本文在王宏鸣等^[26]的研究基础上进一步测算城市层面创新要素的错配程度^[25]。具体测算方法如下。

城市研发资本错配指数 $\kappa_{\kappa i} = (1 - \gamma_{\kappa i})/\gamma_{\kappa i}$ 和城市研发人员错配指数 $\kappa_{\iota i} = (1 - \gamma_{\iota i})/\gamma_{\iota i}$ 。其中, $\gamma_{\kappa i}$ 和 $\gamma_{\iota i}$ 为资本研发要素和劳动研发要素的绝对扭曲系数,使用价格相对扭曲系数代替。式(3)反映了各地创新要素实际分配与理想状态之间的差异,标志着城市的创新要素错配程度。

$$\hat{\gamma}_{Ki} = \left(\frac{K_i}{K}\right) \left/ \left(\frac{r_i \beta_{Ki}}{\beta_K}\right), \ \hat{\gamma}_{Li} = \left(\frac{L_i}{L}\right) \left/ \left(\frac{r_i \beta_{Li}}{\beta_L}\right)\right.$$
(3)

其中: r_i 为城市 i 的创新产出份额; β_{κ_i} 和 β_{ι_i} 分别为城市 i 的研发资本和研发人员的产出弹性。若 $\hat{\gamma}_{\kappa_i} > 1$ 和 $\hat{\gamma}_{\iota_i} > 1$ 则有 $\kappa_{\kappa_i} < 0$ 和 $\gamma_{\iota_i} < 0$,表明城市创新要素配置过度,反之则表示创新要素配置不足。为统一错配程度的符号以此进行更好的回归分析,对计算的系数取绝对值以反映创新要素的错配程度。

假定创新生产函数为规模收益不变的柯布道格拉斯生产函数,则有:

$$Y = AK_{ii}^{\beta_{Ki}} L_{ii}^{1-\beta_{Ki}} \tag{4}$$

其中: Y 为创新产出,在数值上使用城市专利数量作为代理变量; K_u 为研发资本投入,以城市创新资本存量为代理变量; L_u 为研发人员投入,以城市研发人员全时当量为代理变量。需要特别指出的是,城市研究与试验研发人员全时当量存在严重缺失,本文利用科研从业人员数量将省级研究与试验发展人员全时当量数据拆分至城市。

(三)控制变量及数据来源

城市经济密度(Dense):用地区生产总值与行政区域土地面积的比值表示;产业结构合理化(Theil),参考袁航和朱承亮^[27]的研究构建产业合理化指数;基础设施(Road):城市年末公路里程占行政区域面积比值;金融发展水平(Fin):年末金融机构存贷款余额与地区生产总值的比值^[28];政府干预程度(Govern):政府财政支出占地区生产总值的比重^[29];市场化程度(Mark):参考吕冰洋和贺颖^[30]的做法,测算地级市市场一体化指数。

数据主要来源于《中国城市统计年鉴》《中国区域经济统计年鉴》《中国科技统计年鉴》、LandScan 全球人口分布数据及各省市统计年鉴与统计公报,样本区间为2008—2022年。研究对象为青年发展型试点地级市城市,不包括北京、天津、上海和重庆下辖区级行政单位,以及在计算相关数据过程当中因缺失数据而剔除的贵州省黔西南布依族苗族自治州、西藏自治区拉萨市和新疆维吾尔自治区克拉玛依市(不含港澳台地区)。

四、实证检验

(一)特征分析

青年发展型城市的空间结构整体上表现为单中心集中化趋势如图 1 所示。尤其是在 2019 年,其聚集程度明显上升,与全国城市表现出截然相反的发展模式。这意味着,与我国城市整体呈现出逐步多中心化的趋势相比,青年发展型城市更趋向于集中的空间结构。另外,在创新要素配置上,青年发展型城市在样本期间的初期错配程度明显低于全国平均水平,表明其在初期阶段的创新资源配置较为合理,明显优于全国城市平均水平,而整体创新要素错配趋势和全国趋势趋同,呈现下降趋势。总体而言,青年发展型城市空间结构与创新资源配置的关系上表现出与全国城市样本不同的关系,该特征事实为探究青年发展型城市的未来城市结构规划及创新要素的优化配置指明必要性。

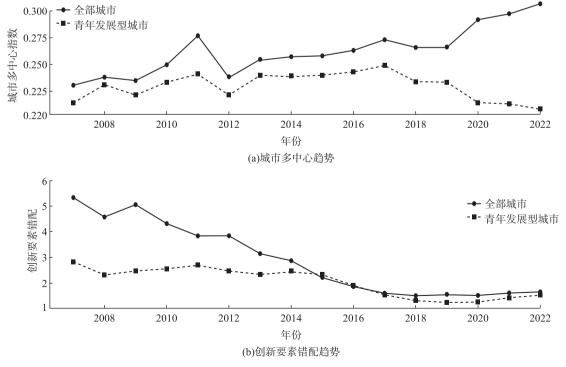


图 1 城市多中心和创新要素错配趋势

(二)基准回归分析

为分析城市青年发展型城市空间结构对创新要素错配的影响,运用时间地区双向固定效应模型对基准回归模型进行分析,具体结果见表 1。(1)列只将城市多中心纳入模型,发现多中心空间结构对城市创新要素错配的回归系数为负且通过显著性检验。(2)列将城市多中心的二次项加入至模型,二次项系数为正且通过显著性检验,说明城市多中心空间结构与城市创新要素错配之间存在明显的 U 型关系,即城市多中心空间结构先会减弱城市的创新要素错配程度,但随着城市过度追求区位功能的分散化,创新要素错配程度将再逐渐提高。在加入城市层面的控制变量,并固定个体效应和时间效应,二次项系数数值减小,但依旧通过显著性检验。正如前文及假设 H1 分析,青年发展型城市空间结构的适当分散可有效减弱城市创新要素的错配程度,而过度趋于多中心则对城市的集聚趋势产生分散效应,初步验证本文假设 H1。

图 2 汇报青年发展型城市和一般城市的城市空间结构对创新要素错配的 U 型非线性结构。从表 1 的汇报结果来看,青年发展型城市进一步对城市空间结构进行分散可以降低创新要素的整体错配程度,而从时间的维度上观察,青年发展型城市的空间结构整体上表现出集中趋势且伴随着创新要素错配程度的上升。这表明青年发展型城市目前正位于"空间-要素配置"的 U 型非线性结构最低点的左侧,且呈现出进一步向左移动的趋势,即城市空间结构愈发集中,创新要素错配愈发严重。表 1 的(5)列汇报全部城市的空间结构对创新要素错配的影响,城市多中心的一次项系数显著为负,二次项系数显著为正。从时间维度观察,不同于青年发展型城市,一般城市城市空间结构呈发散趋势且随城市空间结构的分散创新要素整体错配程度下降,整体位于 U 型结构最低点的左侧且有向最低点移动的趋势。总结来看,青年发展型城市目前的空间结构与一般城市相比较在缓解创新要素错配方面并不具有优势且随城市空间结构的进一步集中并没有好转趋势。

变量	(1)	(2)	(3)	(4)	(5)
文里 -	IM	IM	IM	IM	IM
poly	-1.363** (0.677)	-4. 393 ** (2. 119)	-5. 141 *** (1. 587)	-2. 145 ** (1. 003)	-2. 018 ** (0. 882)
$poly^2$		9. 352 *** (3. 154)	8. 271 *** (2. 579)	4. 822 *** (1. 112)	2. 061 *** (0. 751)
Dense			-2. 203 *** (0. 431)	-0. 998 * (0. 579)	-1. 112 *** (0. 314)
Fin			-0.133*** (0.053)	0. 232 * (0. 131)	0. 166 ** (0. 098)
Theil			-0. 823 ** (0. 401)	-1. 341 ** (0. 659)	0. 442 ** (0. 241)
Road			0. 076 *** (0. 017)	-0. 197 *** (0. 015)	-0. 088 ** (0. 045)
Govern			-3. 233 *** (1. 362)	-3.380* (1.227)	-2. 524 ** (1. 276)
Mark			0. 059 * (0. 031)	0. 031 *** (0. 014)	0. 024 *** (0. 009)
常数项	1. 854 *** (0. 339)	2. 748 *** (0. 368)	5. 331 *** (0. 687)	3. 657 *** (0. 781)	3. 291 *** (0. 636)
控制变量	No	No	Yes	Yes	Yes
城市固定	No	No	No	Yes	Yes
时间固定	No	No	No	Yes	Yes
N	540	540	540	540	3696
R^2	0.0870	0. 1460	0. 2634	0. 3594	0. 3841

表 1 基准回归结果

注: *、**、*** 分别表示在 10%、5%、1%的显著性水平;括号内为稳健标准误。

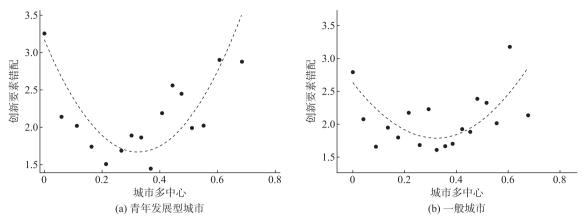


图 2 城市多中心与创新要素错配散点线性拟合②

(三)稳健性检验

1. 更换被解释变量

基础回归部分在测算城市创新要素错配指数当中,对于创新资本的存量使用永续盘存法,创新资本的折旧率参考张军等^[31]的研究设定固定资本折旧为 9.6%,并以 2007 为基期。为保证结果的稳健性,本文将衡量各城市的研发资本投入的 R&D 资本存量折旧率调整为 5%,将样本周期缩短为 2010—2021 年,以减少异常值和极端事件对模型稳定性的影响。同时,对创新资本要素错配(IM_K)和研发人员要素错配(IM_L)分别进行考察,以此检验模型在考察城市多中心空间结构对创新要素错配不同方面的稳健性。具体检验结果见表 2。细化至创新要素的人员错配和资本错配,在 9.6%和 5%的研发资本折旧率及不同样本区间当中,城市多中心空间结构对于创新要素整体错配程度的解释依旧具有稳健性。

2. 更换解释变量测算

考虑到对解释变量的单一测算方法的局限性,借鉴李金锴和钟昌标 $[^{32}]$ 的做法,计算衡量城市群空间结构的赫芬达尔系数 $HHI_i = \sum_{i=1}^n (h_{ji}/H_t^2)$ 。其中: h_{ji} 为城市 i 内次级单元 j 在 t 年的夜间灯光亮度总值, H_t 为城市 i 在 t 年的灯光总值,n 为城市内次级单元数量。同时,借鉴刘修岩等 $[^{33}]$ 的做法采用首位度指标衡量城市空间结构,即城市首位度(Prime) 在数值上等于城市内最大次级单元的灯光亮度综合占城市总灯光亮度的比重。考虑到城市创新要素错配若对城市结构存在一定的路径依赖性,则也会对结果的稳健性产生一定的影响。对此本文也尝试加入解释变量的一阶前置项,建立动态面板进行估计。估计结果如表 3 所示,(1) 列为以赫芬达尔系数表示城市多中心,一阶项系数不显著,二次项系数显著为正。(2) 列为城市首位度测算城市多中心,解释变量一阶项系数显著为负,二次项系数显著为正。(3) 列将城市多中心指数一次项前置一期(F.polv)

		表 2 替	换彼解释变重		
变量	IM_K(9.6%折旧)	IM_L(5%折旧)	IM	IM_K	IM_L
poly	-4. 771 * (2. 790)	-3. 046 ** (1. 129)	-3. 138 ** (1. 727)	-1.669** (0.901)	-3. 608 *** (1. 191)
$poly^2$	8. 381 *** (3. 441)	6. 627 *** (2. 730)	6. 195 ** (3. 328)	3. 141 (1. 228)	4. 151 * (2. 399)
控制变量	Yes	Yes	Yes	Yes	Yes
固定效应	Yes	Yes	Yes	Yes	Yes
N	540	540	432	432	432
R^2	0. 2232	0. 2501	0. 0829	0.0933	0. 1562

表 2 替换被解释变量

注: *、*** 、*** 分别表示在 10%、5%、1%的显著性水平;括号内为稳健标准误。

② binscatter 方法首先将散点划分为不同的格子(bins),其次再求取各个格子之间的均值,最后加上拟合线,此方法可以保证拟合的正确性的同时,避免由于样本过多导致的拟合图较为拥挤的问题。

和二次项前置一期 $(F. polv^2)$,以此检验存在路径依赖 的情形。结果显示,一次项系数不显著,二次项系数显 著,即在前置一期城市空间结构的条件下,城市空间结 -构对创新要素错配仍存在 U 型的非线性影响, 相较于 基础回归部分系数绝对值有所下降,表明城市空间结 -构对创新要素错配程度存在一定的路径依赖。总结来 看,在更换解释变量测算方法和前置解释变量条件下, 解释变量系数方向和显著性均稳定,说明基础回归部 分结果具有稳健性。

3. 内生性问题

在分析空间结构与创新要素错配因果效应的研究 中,内生性问题是不容忽视的。一是,存在反向因果关 系。创新要素错配程度较低的城市通常具有较高的发 展水平,这些地区更有能力和资源支持城市多中心布 局的实现。二是,存在遗漏变量问题。尽管已考虑了 多个控制变量,但仍无法完全排除所有潜在的影响因 素。因此,采用工具变量估计方法是必要的。相关文 献指出,自然地理环境是影响城市空间结构的重要因

示: 目.	(1)	(2)	(3)
变量	IM	IM	IM
ННІ	-3. 235 * (1. 904)		
HHI ²	8. 551*** (3. 917)		
Prime		-3. 837 * (2. 214)	
Prime ²		8. 537 *** (3. 119)	
F. poly			-2.010** (0.899)

更换被解释变量

(3)

3. 132 *

(1.801)

Yes

Yes

499

*** 分别表示在 10%、5%、1%的显著性水平:括号内为 稳健标准误。

Yes

Yes

540

0.1991

Yes

Yes

540

0.2210

素[34],地表起伏度等地理环境因素对人口分布结构有明显影响,即人口更倾向于在平坦地区集聚而不愿意 在地形起伏程度较大的地区生产生活。同时,各类用地的建设与维护成本也会影响城市内部和城市之间的 人口分布,城市地表起伏的程度影响适宜居住面积,人口倾向于在平坦地区集聚,相应也伴随着产业集聚跟 随人口集聚,基础设施建设及相关维护也会影响城市内部空间结构。自然地理因素是城市固有的外生性自 然信息[35]。然而,自然地理因素随时间趋势在短期内几乎没有变化,应当引入时间趋势进行进一步分析。 汇率变化可以通过多种传导机制间接影响城市的多中心结构:①影响国际贸易和投资流动,吸引更多投资 和商业活动集中于城市及其周边区域:②汇率波动带动的就业机会吸引更多人口流入,促进周边区域发展: ③政府因汇率变化调整政策,加大对周边地区的基础设施投资和支持。这些因素综合作用推动城市多中心 结构的形成和演化。因此,本文选择城市地形起伏程度(Tre)与汇率倒数(Rate)的交乘项,以及城市多中心 的一阶滞后项(L. poly)作为城市多中心指数非线性影响的工具变量,回归结果见表 4。根据表 4 汇报结果发 现,不论是单独将城市多中心二次项引入模型还是同时将城市多中心一次项和二次项引入模型.多中心指数

 $F. poly^2$

控制变量

固定效应

N

 R^2

表 4 工具变量回归							
亦具	(1)	(2)	(3)	(4)	(5)		
变量 	IM	$poly^2$	IM	$poly^2$	poly		
$poly^2$	3. 329 **		11. 313 **				
poty	(1.601)		(5.162)				
nol.			8. 431 *				
poly			(4.402)				
T v.Dt.		-0. 493 ***		0. 077 ***	0. 034 ***		
$Tre \times Rate$		(0.131)		(0.053)	(0.009)		
I				0. 661 ***	0. 910 ***		
L. poly				(0.002)	(0.111)		
控制变量	Yes	Yes	Yes	Yes	Yes		
Cragg-Donald Wald F	96. 681		26. 237				
Kleibergen-Paap rk Wald F	112.637		28. 979				
N	540	540	499	499	499		
R^2	0. 1841	0. 2471	0. 2214	0.7953	0. 8128		

注: *、**、***分别表示在10%、5%、1%的显著性水平;括号内为稳健标准误。

的二次项系数均显著。同时第一阶段的 F 值均大于 10,通过过度识别检验,表明工具变量的选取具有合理性。结果再次证明城市的多中心发展模型对于城市创新要素错配的 U 型影响。这也意味着,从创新要素的配置效率视角出发,多中心发展模式对于青年发展型城市而言也并非"万全之策",而是存在一个最优水平。

五、进一步分析

(一)要素流动机制分析

目前关于要素错配的研究大多基于静态角度,鲜有研究从城市之间的创新要素动态流动视角考虑资源的再配置效应。本文采用引力模型,借鉴白俊红和刘宇英^[36]的研究,将省域层面的创新要素的流动细化至城市区域的创新要素流动,分别为创新资本要素流动和创新人员要素流动。

创新资本要素流动表达式如式(5)所示。

$$cflow_{ij} = \frac{\ln K_i \ln K_j}{R_{ii}^2} \tag{5}$$

其中: $cflow_{ij}$ 为城市 i 和城市 j 的创新资本流动; K_i 和 K_j 为城市 i 和城市 j 的 R&D 资本存量; R_{ij} 为相邻城市 i 和城市 j 中心之间的地理距离,基于城市中心的经纬度测得。假设与某个城市地理上相邻的城市个数为 n,城市 i 的区域创新资本要素流动量表达式如式(6)所示。

$$cflow_i = \sum_{i=1}^{n} cflow_{ij} \tag{6}$$

创新人员的流动不同于创新资本的流动,容易受到经济环境、就业环境、居住环境和创新环境等社会因素的影响。因此,选取城市人均 GDP、城镇单位就业人员平均工资、商品房平均销售价格和研发机构数量分别代表上述因素,以体现城市吸引力水平。城市创新人员要素的流动表达式如式(7)所示。

$$pflow_{ij} = \frac{\ln N_i \ln G_j \ln S_j \ln I_j}{R_{ij}^2 \ln P_j}$$
(7)

其中: $pflow_{ij}$ 为城市 i 和城市 j 之间的创新人员要素流动; N_i 为地区 i 的 R&D 人员; G_j 、 S_j 、和 P_j 分别为城市 j 的人均生产总值、平均工资、平均房价及研发机构数量; R_{ij}^2 为 I_j 相邻城市的城市中心的空间距离。城市 i 对于相邻城市的创新人员要素总流动量可以表示为

$$pflow_i = \sum_{i=1}^{n} pflow_{ij}$$
 (8)

由于测算所得创新资本要素流动和创新人员要素流动存在典型的右偏特征,本文将其对数化。

根据表 5 的回归分析,城市多中心结构对创新资本流动和创新人员流动具有显著的 U 型非线性影响。初期,中心区域的集聚效应提升资源集中和效率,但多中心结构可能导致资源分散和效率降低。然而,随着中心区域的负外部性显现,创新资本和创新人才逐渐向其他区域扩散,多中心结构通过缓解中心压力、提供多样化环境和促进知识扩散发挥积极作用。(1)列和(2)列的结果显示,创新资本流动与城市多中心结构的二次项显著为正,但资本流动无法直接减轻创新要素错配。(3)列结果不显著,表明城市空间结构未通过创新资本流动对要素配置产生中介效应。在中国城市规划与创新实践中,创新资本流动反而加剧了要素错配,核心城市如北京、上海、深圳吸引了大量创新资本和高端人才,边缘地区资源利用效率较低。(4)列显示,城市多中心结构对创新人员流动同样呈 U 型特征,初期资源分散降低效率,但随着基础设施和政策环境改善,多中心结构促进了人员流动,缓解了中心区域的压力。(5)列和(6)列表明,多中心结构通过促进创新人员流动,缓解了创新要素错配,提升了整体创新效率。相比之下,创新资本流动性较低,更多依赖金融政策和市场环境,而创新人员的高流动性带来了显著的知识溢出效应和区域互补性。因此,政策和基础设施建设应侧重吸引和留住创新人才,提升生活质量并优化创新要素配置。

本文重点关注青年发展型城市创新要素配置情况,检验青年发展型城市在城市空间结构对创新要素错 配影响当中的要素流动效应,结果见表 6。

			一放规甲安系派4	2 -12 c th 2		
变量	(1)	(2)	(3)	(4)	(5)	(6)
文里	cflow	IM	IM_K	pflow	IM	IM_L
off		4. 810 ***	4. 472			
cflow		(2.113)	(3.512)			
n.d.a					-1. 349 ***	-2. 193 **
pflow					(0.229)	(0.522)
	-0.056 *	-6. 171 **	-4. 335 **	-0. 219 **	-3. 191 ***	-5. 141 **
poly	(0.031)	(2.990)	(1.926)	(0.098)	(1.124)	(1.030)
, 2	0. 328 ***	9. 009 *	7.816*	0. 299 **	7. 933 ***	10. 282 **
$poly^2$	(0.083)	(5.436)	(4. 290)	(0.149)	(1.276)	(1.018)
控制变量	Yes	Yes	Yes	Yes	Yes	Yes
固定效应	Yes	Yes	Yes	Yes	Yes	Yes
N	2926	2926	2926	3155	3155	3155
R^2	0. 1114	0. 1434	0. 1519	0.1156	0.3917	0. 2915

表 5 一般城市要素流动机制

注: *、**、***分别表示在10%、5%、1%的显著性水平;括号内为稳健标准误。

	农 0						
	(1)	(2)	(3)	(4)	(5)	(6)	
文里	cflow	IM	IM_K	pflow	IM	IM_L	
cflow		-3. 922 ***	-7. 184 ***				
cjiow		(0.991)	(0.997)				
pflow					-1.537 ***	-1. 399 ***	
руюш					(0.606)	(0.396)	
nol.	-0. 161 ***	-6. 183 ***	-7. 027 **	1. 843 ***	-3.509	-3.614*	
poly	(0.008)	(1.341)	(3.410)	(0.515)	(2.491)	(2.141)	
, 2	0. 097 ***	10. 062 ***	13. 559 ***	-1.071*	7. 974 *	8. 267 ***	
$poly^2$	(0.104)	(2.177)	(4. 273)	(0.545)	(4.051)	(1.491)	
控制变量	Yes	Yes	Yes	Yes	Yes	Yes	
固定效应	Yes	Yes	Yes	Yes	Yes	Yes	
N	540	540	540	540	540	540	
R^2	0. 8841	0. 1492	0. 2071	0. 1135	0. 1488	0.1191	

表 6 青年发展型城市要素流动机制

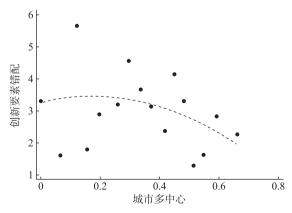
通过比较表 6 中的(2)列和(3)列与表 5 中的(2)列和(3)列的结果,一般城市的多中心空间结构通过创新资本流动,反而加剧了创新要素和资本的错配问题;而在青年发展型城市中,多中心结构则通过创新资本流动有效缓解了这些错配问题。青年发展型城市的空间结构相对集中,且经济仍有进一步集聚的趋势。而一般城市则表现出扩散的趋势,导致资源分散、基础设施薄弱及政策协调不足,从而在不同程度上加剧了创新要素整体和创新资本要素的错配。理论上,多中心结构应通过缓解中心城区的压力、促进多样化发展来提升城市功能。但现实中,由于缺乏足够的基础设施和政策支持,资源难以有效集中,导致创新效率下降,规模经济和集聚效应未能充分发挥作用。相比之下,青年发展型城市凭借集中化的空间结构和系统化的支持措施,通过创新资本流动提升了创新要素配置效率。其可以依托现代化产业体系优化全要素生产率,形成一个自我强化的创新环境,充分发挥集聚经济、创新生态系统和网络效应,促进了资本和人才的高效流动与利用,进而提高了资源配置效率和创新产出。

根据表 6 中的(5)列和(6)列的结果,创新人员流动的中介效应在青年发展型城市的多中心结构中不如在一般城市中显著。这可以从理论和现实两个方面进行解释。从理论层面看,青年发展型城市具有更强的集聚效应,资源和人才集中在少数核心区域,限制了创新人员在城市不同中心之间的流动。同时,这些城市的产业发展具有路径依赖性,集中于特定的高新技术领域,导致创新人员倾向于留在核心区域。此外,成熟的创新生态系统也集中于少数区域,虽然提升了这些区域的创新效率,但也降低了创新人员的流动性和资源的均衡分布。从现实层面看,政策通常集中于提升青年发展型城市核心区域的竞争力,通过支持科技园区、创新创业基地及高等教育机构,吸引了大量资金和人才。这种政策导向有效增强了核心区域的创新能

注: *、**、*** 分别表示在 10%、5%、1%的显著性水平;括号内为稳健标准误。

技术经济 第44卷 第10期

力,但也导致创新资源过度集中。同时,核心区域的基础设施更为完善,生活成本和质量较高,进一步吸引 了创新人员留在这些区域,减少了向次级中心的流动。核心区域作为城市文化和社交中心,拥有丰富的文 化活动和社交机会,也进一步增强了创新人员留在这些区域的意愿。


进一步地,本文采用青年发展型城市在空间上相邻城市作为样本进行分析,结果见表7。(1)列和(4) 列表明,青年发展型城市周边的城市与青年发展型城市在城市多中心空间结构对创新资本要素和创新人员 要素的流动当中表现出相反的影响方向,即周边城市的城市多中心空间结构对创新资本要素表现为显著的 倒 U 型影响,对创新人员要素表现为显著的 U 型影响,均与青年发展型城市相反。其中(2)列和(3)列表 明,周边城市的创新资本要素的流动加剧了空间结构多中心对于创新要素的整体错配及创新资本要素的错 配,其结果与青年发展型城市相反,这表明青年发展型城市对周边城市有"虹吸"效应。虽创新资本要素存 在流动,但更多的是青年发展型城市和周边城市的要素质量的"高-低"单向互换,一定程度上是通过创新资 本要素的流动牺牲周边城市的创新要素配置水平换取青年发展型城市的创新资本要素优化配置。(5)列和 (6)列汇报结果显示,城市多中心结构的一次项系数和二次项系数均不显著,表明周边城市的创新人员要素 流动对城市空间结构和创新要素整体错配及创新人员要素错配存在完全中介效应。造成此差异可能存在 的原因是,青年发展型城市对于试点城市的选择存在政策制定者的主观判断,相较于其他城市,试点城市本 就具有一定的政策优势。

亦具	(1)	(2)	(3)	(4)	(5)	(6)
变量	cflow	IM	IM_K	pflow	IM	IM_L
cflow		3. 982 * (2. 335)	2. 013 *** (0. 373)			
pflow					-5. 041 *** (0. 119)	-11. 001 *** (2. 224)
poly	0. 013 *** (0. 001)	9. 201 ** (4. 506)	9. 397 *** (3. 006)	-0. 251 * (0. 133)	7. 018 (4. 005)	5. 244 (4. 217)
$poly^2$	-0. 008 *** (0. 003)	-12. 811 ** (5. 837)	-14. 1653 ** (7. 009)	0. 510 *** (0. 193)	-9. 141 (5. 510)	-4. 244 (7. 313)
控制变量	Yes	Yes	Yes	Yes	Yes	Yes
固定效应	Yes	Yes	Yes	Yes	Yes	Yes
N	1620	1620	1620	1620	1620	1620
R^2	0. 1433	0. 1100	0. 1129	0. 3525	0. 1424	0.0911

表 7 青年发展型城市相邻城市要素流动机制

注: *、*** 分别表示在 10%、5%、1%的显著性水平;括号内为稳健标准误。

人员要素相对于资本要素具有主观能动性,试点城市 冗余创新人员要素与周边城市的双向流动中存在"衍射"效 应,形成城市之间创新人员要素的"高-低、低-高"双向互 换,更靠近帕累托最优状态。就周边城市空间结构对创新 要素整体错配来看(图3),城市多中心空间结构对创新要 素错配呈倒 U 型,与一般和青年发展型城市相比具有显著 差异。受试点城市已有的政策和区位等优势影响,导致创 新要素的流动更加倾向于青年发展型城市。因此,与试点 城市不同,对于周边城市而言,相对集中或相对分散的城市 结构反而更有利于创新要素的整体配置。一方面,相对集 中的城市结构可以缓解创新资本要素过度单向流动至青年 binscatter 方法首先将散点划分为不同的格子(bins),其次再 发展型城市,从而缓解创新要素整体错配;另一方面,相对 分散的城市结构却可以使周边城市在空间上谋取与青年发 展型城市创新人员要素的双向流动,通过对创新人员要素 图 3 周边城市的城市多中心指数与创新要素配置

求取各个格子之间的均值,最后加上拟合线,此方法可以保 证拟合的正确性的同时,避免由于样本过多导致的拟合图较 为拥挤的问题

错配的减弱来缓解创新要素整体错配。整体而言,青年发展型城市的存在使得周边城市由于创新要素的动态流动无法在城市空间结构上兼顾创新人员要素和创新资本要素的优化配置。因此,青年发展型城市在城市空间结构上由于要素的动态流动,内部城市结构的集中现状使创新人员要素优化配置受限但利好于周边城市创新人员要素配置,而城市结构的进一步分散对于创新资本要素的优化配置则会牺牲周边城市的创新资本要素配置水平。

(二)要素创新性配置环境机制分析

城市的空间结构可以通过分散和重组创新资源及区域之间的创新要素流动,促进城市不同中心区域的均衡发展,这一过程的有效性依赖于要素的创新性配置环境。在一个优化的创新性配置环境中,高水平的青年劳动者和先进的数字化平台能够有效解决信息不对称问题,提升资源配置效率,减少资源错配现象。另外,科技创新的推动和新兴产业的发展在多中心结构中提供了更多的就业机会和创业环境,吸引高素质人才和高质量创新资本向城市各中心集聚,从而进一步优化资源配置。参考肖有智等[37]的方法,基于百度新闻数据当中有关要素创新性配置环境关键词③的词频代表城市要素创新性配置环境(env),并对词频进行加1取对数处理。

表 8 的检验结果显示,(2)列中一般城市的多中心空间结构与要素创新性配置环境交叉项的系数显著为正,而其平方项与要素创新性配置环境交叉项的系数显著为负,表明要素的创新性配置环境在全样本城市中对创新要素错配具有负向调节作用。当城市的多中心化程度较低时,创新性配置环境会弱化多中心结构对创新要素错配的缓解作用;而在多中心化程度较高时,创新性配置环境则会缓解因城市结构发散所导致的创新要素错配。因此,创新性配置环境在城市结构相对分散时,对创新要素的配置具有更强的调节作用。具体而言,创新性配置环境提高了空间结构进一步发散对创新要素错配缓解的上限,从而降低了多中心结构对创新要素错配的 U 型曲线的整体水平。一般城市的多中心结构在创新性配置环境中更具适应性,使得不同城市中心拥有各自的资源和产业优势,形成了多样化的生态系统,促使创新要素在各中心之间有效互动和协同,从而优化了创新要素的配置效率。

表 8 的(4) 列中的青年发展型城市展现出不同的调节效应。具体来说, 创新性配置环境和城市多中心 结构二次项的交互项系数为正,而多中心结构二次项的系数显著为负。值得注意的是,在加入创新性配置 环境对多中心空间结构一次项和二次项的交互效应后,多中心结构的二次项系数由 U 型结构转变为倒 U 型 结构。正如前文所述,青年发展型城市的空间结构表现出日益集聚的趋势,并伴随创新要素错配的增加。 当加入创新性配置环境的调节效应后,原有的非线性结构发生反转。这种情况下,青年发展型城市的集聚 反而可能在创新性配置环境的调节下缓解创新要素的错配,甚至集中化的空间结构在这种环境下表现出正 向作用,减轻了创新要素错配的问题。这一现象表明,青年发展型城市的要素创新性配置环境在调节多中心 结构与创新要素错配之间的关系上起到了关键作用,改变了原有的 U 型曲线特征,使空间结构的影响表现出不 同的动态特征。青年发展型城市通过政策支持和资源集聚,形成了高度集中的创新性配置环境,确保了创新资 源和人才的高效集聚和利用[38]。青年发展型城市注重建设完善的创新生态系统,这种系统不仅促进了创新要 素之间的互动和协同,还使得创新要素在高效的创新性配置环境中得到最佳利用,提升了整体创新效率。在现 实中,青年发展型城市通过提升生活质量,吸引并留住高素质青年人才,打造"宜业、宜居、宜学、宜创、宜娱"之 城,增强了城市的吸引力和创新动力。要素创新性配置环境对青年发展型城市空间结构聚集所产生的集聚不 经济进行缓解,同时对空间结构与创新要素错配非线性关系的反转,可以得出在有效的要素创新性配置环境当 中,青年发展型城市的未来建设可倾向于城市结构的集中以发挥城市核心区域相对更高的信息效率,也可以选 择结构分散并通过以数字信息为代表的要素创新性配置弥补城市各中心之间的信息损失。

③ 具体关键词包括:新质生产力、人工智能、科技创新、技术革新、科学发展、创新动能、颠覆性技术、突破性技术、革命性创新、新技术、前沿技术、高新技术、尖端技术、新能源、新经济、数字经济、创新经济、未来经济、新业态、数字化转型、产业升级、新模式、战略性新兴产业、未来产业、高科技产业、新动能产业、创新驱动、技术驱动、创新引领、重大突破、提高生产力、质的转变、提升生产力、高效能、高性能、高效率、高产出、高质量发展、质量优先、效益提升、高标准发展、主导技术、创新领先、科技引领关键突破、核心技术突破。

表 8	要素创新性配置环境
1K 0	女系的刚工地且外况

		化0 女系的侧口配	1-11-5C	
	一般	城市	青年发展	 是型城市
变量	(1)	(2)	(3)	(4)
	IM	IM	IM	IM
	0. 211 **	0. 255	0. 375 *	0. 237
env	(0.101)	(0.171)	(0.182)	(0.200)
		3. 991 ***		-3. 414 **
$env \times poly$		(1.117)		(1.700)
, 2		-10.017***		9. 177 ***
$env \times poly^2$		(1.978)		(2.193)
,	-1. 591 *	-13. 827 ***	-4. 733 ***	9. 720 **
poly	(0.805)	(2.114)	(2.121)	(4.892)
, 2	4. 010 **	25. 117 ***	10. 144 ***	-25. 476 ***
poly ²	(1.914)	(5.149)	(3.207)	(8.111)
控制变量	Yes	Yes	Yes	Yes
固定效应	Yes	Yes	Yes	Yes
N	3635	3635	540	540
R^2	0. 1162	0. 1880	0. 2225	0. 2839

注: *、***、***分别表示在10%、5%、1%的显著性水平;括号内为稳健标准误。

创新人员要素和创新资本要素对要素配置的创新性配置环境反映程度在青年发展型城市当中并不一样,如表9所示。(2)列结果显示,要素创新性配置环境与城市多中心一次项和二次项的交互项系数均不显著,表明要素的创新性配置环境并没有显著影响青年发展型城市当中空间结构对创新人员要素错配的影响。一是,青年发展型城市中的创新人员具有较高的流动性和适应性,能够迅速调整工作和生活地点以适应市场需求变化,从而减少多中心结构对创新人员要素错配的影响。同时,高素质的创新人员能够有效利用市场信息进行自我调节和优化,减少了对外部创新性配置环境的依赖。二是,青年发展型城市的政策支持和创新生态系统较为一致,无论是在中心区域还是非中心区域,创新人员都能享受到类似的政策和环境支持。因城市不同区域的机会和资源配置差异有限,政策和环境的同质性使得多中心结构对创新人员要素错配的影响减弱。同时,如前文所述,创新人员要素在青年发展型城市和周边城市的双向流动,致使青年发展型城市对于创新人员要素的流动量相对一般城市而言较大,且青年发展型城市目前欠缺对流入进来的优质创新人员要素提供必要的保障,致使创新人员要素无法及时适配要素的创新性环境进而缓解创新要素的错配。

表9的(4)列结果显示,要素创新性配置性环境与城市多中心的一次项交互项系数显著为负,与二次项交互项系数显著为正。要素的创新性配置环境对于创新资本要素配置的影响对于整体的创新要素配置影响方向一致。从交互项的系数绝对值来看,对于创新资本的调节效应大于整体创新要素配置的调节效应,即青年发展型城市在城市创新效率优化过程中主要源于要素创新性配置环境下创新资本的优化配置。在聚集经济理论下,相对于创新人员要素错配的缓解,负向交互项表明,要素创新性配置环境未能有效支撑创新资本的配置,城市空间结构过度分散会造成城市内单位空间的"集中不足",造成资源的紧张和竞争,抑制创新效率。二次交互项系数显著为正,表明适当的城市多中心结构,可以有效加强创新资本与创新生态系统内与其他要素的融合,减少资本的功能重叠和错位,形成创新互动新形势,而过度的分散将降低创新生态系统与城市的耦合共进。从现实青年的城市选择来看,相对于创新资本,青年人才的超量集聚和同质集聚,可能出现青年人才发展和城市发展并不匹配,优质的人才资源无法在城市当中得到有效配置,青年理想和城市现实生产产生落差,降低对其自身进一步提升和参与城市建设的积极性,最终导致创新人员要素的配置在要素创新性配置环境对城市整体创新要素错配的环境当中并不如创新资本要素有效。因此,目前来看城市对青年的吸引力和黏性有待提高有关,人才集聚的正效应发挥不充分,青年人才集聚规模过大或同质化现象存在,导致人才拥挤和人力资源浪费,人才集聚的页效应有待降低。

	创新人员	要素错配	创新资本	要素错配
变量	(1)	(2)	(3)	(4)
	IM_L	IM_L	IM_K	IM_K
	0. 351 **	0.012	0. 823 **	0.858
env	(0.172)	(0.227)	(0.457)	(0.721)
		0. 239		-5. 119 ***
$env \times poly$		(1.592)		(2.004)
. 2		1. 428		8. 221 ***
$env \times poly^2$		(1.130)		(3.303)
7	-0.112	-0.491	0.955*	10. 291 **
poly	(1.174)	(0.339)	(0.483)	(1.535)
. 2	-0. 421	-5. 284	-1.366	-24. 155 ***
poly ²	(3.155)	(4.237)	(0.949)	(10.025)
控制变量	Yes	Yes	Yes	Yes
固定效应	Yes	Yes	Yes	Yes
N	540	540	540	540
R^2	0. 1152	0. 1300	0. 1929	0. 2125

表 9 青年发展型城市要素创新性配置环境调节效应

注: *、***、****分别表示在10%、5%、1%的显著性水平;括号内为稳健标准误。

六、结论与启示

青年人才是最具活力和创造力的群体,是推动创新驱动发展的主力军。在建设青年发展型城市时,如 何发挥青年人才集聚所带来的创新效应成为推动青年创新与城市创新相互促进的重要抓手。目前,大多数 城市的创新生态系统建设仍处于创新要素堆砌阶段,创新要素各自为战,缺乏协同创新,尚未真正形成有利 于青年发挥创新创造能力的生态系统。基于这一现状,本文以青年发展型城市内部空间结构为研究视角, 使用中国青年发展型城市 2008—2022 年城市多中心指数和创新要素错配数据 利用城市地形起伏和汇率的 交互项作为工具变量,尝试识别城市的内部多中心程度与创新要素错配的因果效应。研究结果表明:①青 年发展型城市多中心的空间结构对创新要素错配存在 U 型影响,且在考虑了内生性、替换解释变量计算方 法,以及细化创新要素错配的人员和资本方面等一系列稳健性检验后,这一结论仍成立。青年发展型城市 的城市空间结构目前位于拐点的左侧,空间结构的进一步集聚将加剧创新要素错配程度。②以相邻城市之 间的创新要素流动刻画动态机制,青年发展型城市则主要依赖于创新资本的单向"高—低"流动抑制创新要 素错配,但此方式将会加剧青年发展型城市周边城市的创新资本错配,而青年发展型城市因城市空间结构 的集中对创新人员要素存在吸引但黏性不足。③要素的创新性配置环境可以提高创新要素优化配置的上 限,在青年发展型城市当中缓解其城市空间结构集中对创新要素错配的正向作用,但创新人员要素的优化 配置并没有得到要素创新性配置环境的适配。总结来看,青年发展型城市目前相对于一般城市空间结构较 为集中,且仍有继续集中的趋势。从创新要素的配置区分来看,青年发展型城市在创新资本要素流动及要 素创新性环境的适配当中,其对于创新要素错配的缓解更为有效。青年发展型城市建设的本意是让以青年 人才为代表的创新人员要素来得了、留得住和发展好。但目前来看,青年发展型城市空间结构对创新人员 要素的流动及要素创新性环境的适配还需提升,即城市建设与创新生态系统建设的耦合性有待加强。

考虑到青年发展型城市发展的前瞻性目标及政策导向,本文的政策启示在于,青年发展型城市充当青年人才主要载体,建设利于青年人才集聚的城市环境,为城市注入创新创造动力。一方面,应当关注创新要素的配置效率,并不能"唯创新绩效论";另一方面,对城市空间结构进行优化,从城市整体层面改善创新环境,从根源上助力创新的长期和持续增长。

具体政策建议如下:

第一,从多个方面考虑优化青年发展型城市空间结构。首先,适当分散过于集中的城市空间结构,缓解

主中心的压力,提升创新资源配置效率和城市可持续发展能力。其次,推动城市中心区功能混合,实施精细化、多元化和差异化规划,提升公共服务和交通系统,缓解通勤拥堵,为创新活动提供高效的支持环境。再次,拓展非中心区功能混合,建设多功能社区,完善基础设施和交通承载功能,打造便捷生活圈和活力街区,吸引青年人才和创新企业入驻,形成多中心创新网络。最后,协同中心区与非中心区的功能混合,明确各区域功能定位,增加交通和公共服务配套设施的密集度和规模性,促进区域间的创新资源流动和共享。通过区域协同发展机制,优化资源配置,推动创新要素在全市范围内的高效配置,提升城市整体创新能力和竞争力,为青年人才提供宜居、便捷、多样化的生活和工作环境,从而激发其创新潜力,推动城市高质量发展。

第二,提升城市对青年的吸引力和黏性,优化青年发展型城市与周边城市的创新资本双向流动。一方面,优化住房政策,增加保障性租赁住房、共有产权住房和公租房的供给,特别是面向青年人才的住房,降低其住房成本,同时发展青年公寓和共享居住空间,提供便利的生活设施。另一方面,改善生活环境,提高教育、医疗、文化、体育等公共服务设施的质量和覆盖面,增强青年人的生活质量和幸福感,并建设丰富的文化、娱乐和社交场所,组织多样化的文化活动,增强城市的文化魅力。此外,提供职业发展支持,建设综合就业服务平台,提供就业信息、招聘服务、职业培训、就业指导和职业规划等全方位的就业服务,提升青年人的就业能力和职业发展水平;鼓励创业和创新,提供创意孵化、创业指导、市场推广等全流程支持,建设创新创业园区和孵化器,形成创新要素配置生态圈。与此同时,优化青年发展型城市与周边城市创新资本的双向流动渠道。通过建设区域创新合作平台,促进青年发展型城市与周边城市在科技创新、产业合作、人才交流等方面的协同发展,形成区域创新网络;通过政策引导和市场机制,促进创新资本和人才在青年发展型城市和一般城市之间的合理流动,优化资源配置,提高区域整体的创新能力和竞争力。在优化创新资本要素方面,通过财政支持和税收优惠等政策激励创新资本的双向流动,制定区域创新发展规划,明确青年发展型城市的创新功能定位,优化创新要素的空间布局,确保资源的高效利用和协同发展。

第三,增强青年人才的要素创新性配置环境适配性,充分发挥青年人才集聚效应积极作用。城市应根据产业需求和发展规划,合理引进不同专业背景和技能的青年人才,避免同质化集聚。通过校企合作、海外引才计划等多渠道引才,提供一站式引才服务平台和完善的生活配套设施,提升青年人才的生活质量和满意度。建立健全资源配置机制,设立创新资源协调机构,确保资源配置的高效和公平。通过信息公开和透明的资源分配机制,根据不同创新要素的需求,精准配置资源,动态调整资源配置策略,确保资源配置的灵活性和适应性。促进资源共享和协同创新,建设线上线下相结合的创新资源共享平台,推动产学研深度融合,支持高校和科研机构与企业联合开展技术攻关和项目合作,提升资源利用率,实现青年人才的合理引进和科学分配,确保创新资源的高效利用和配置,最大限度地发挥青年人才的创新潜力和集聚效应,为城市的高质量发展提供有力支持。

参考文献

- [1] MEIJERS E J, BURGER M J, HOOGERBRUGGE M M. Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe [J]. Papers in Regional Science, 2016, 95(1): 181-199.
- [2] KITSOS T, GRABNER S M, CARRASCAL-INCERA A. Industrial embeddedness and regional economic resistance in Europe [J]. Economic Geography, 2023, 99(3): 227-252.
- [3] 张可, 屈晓婷. 青年发展型城市建设问题研究[J]. 北京青年研究, 2024(3): 12-20.
- [4] RAMMER C. Measuring process innovation output in firms: Cost reduction versus quality improvement [J]. Technovation, 2023, 124; 102753.
- [5] 李骏, 陈雨蒙. 青年发展型城市建设: 缘起、实践与评价[J]. 青年发展论坛, 2024(2): 22-31.
- [6] 孙久文, 蒋治. 高质量建设青年发展型城市的科学内涵与战略构想[J]. 西安交通大学学报(社会科学版), 2022(6): 1-9.
- [7] 胡文静. 城市发展如何影响青年幸福感? ——来自京津沪的经验证据与启示[J]. 中国青年研究, 2024(2): 58-66.
- [8] 郑德高, 闫岩, 廖航, 等. 青年发展视角下的城市规划建设评价研究[J]. 城市规划学刊, 2022(S2): 33-39.
- [9] 聂伟, 余燕琪. 整体性治理与深圳青年发展型城市建设的纵深实践[J]. 中国青年研究, 2022(5): 29-36.
- [10] 陈旭, 邱斌. 多中心结构、市场整合与经济效率[J]. 经济学动态, 2020(8): 70-87.
- [11] 张安伟, 胡艳. 多中心空间结构与城市经济韧性[J]. 财经研究, 2023(9): 4-18.
- [12] 刘一鸣, 黄彦瑜, 赖妙华, 等. 广州城市人口空间结构与演化趋势研究[J]. 人口与发展, 2023, 29(2): 41-50.
- [13] SHARIFI A, KHAVARIAN-GARMSIR A R, ALLAM Z, et al. Progress and prospects in planning: A bibliometric review of literature in urban

studies and regional and urban planning, 1956-2022[J]. Progress in Planning, 2023, 173: 100740.

- [14] ROSENTHAL S S, STRANGE W C. How close is close? The spatial reach of agglomeration economies [J]. Journal of Economic Perspectives, 2020, 34(3): 27-49.
- [15] 张可, 屈晓婷. 青年发展型城市建设问题研究[J]. 北京青年研究, 2024, 33(3): 12-20.
- [16] 陆杰华,程子航,陈炫齐.人口高质量发展进程中青年发展型社会的理论探究[J].青年探索,2024(3):5-14.
- [17] 刘丹. 中部地区青年发展型城市建设的指标体系与实践路径——以武汉市青年发展型城市建设为例[J]. 社会科学动态, 2024(8): 59-63.
- [18] 吴光芸,周芷馨. 城市增长工具联盟:青年发展型城市试点政策工具选择——基于我国 45 个试点城市的实证分析[J]. 城市问题, 2023 (11): 15-24.
- [19] 姚娜. 数字技术应用创新、要素市场分割与产业结构升级[J]. 现代管理科学, 2023(6): 24-32.
- [20] 单菁菁. 激发青年发展型城市创新创造活力[J]. 人民论坛, 2023(1): 74-77.
- [21] 盛朝迅. 新质生产力的形成条件与培育路径[J]. 经济纵横, 2024(2): 31-40.
- [22] HE X, YU Y, JIANG S. City centrality, population density and energy efficiency [J]. Energy Economics, 2023, 117: 106436.
- [23] ZHU J, NIU X, WANG Y. Polycentric urban spatial structure identification based on morphological and functional dimensions: Evidence from three Chinese cities [J]. Sustainability, 2024, 16(6): 2584.
- [24] LI Y, LIU X. How did urban polycentricity and dispersion affect economic productivity? A case study of 306 Chinese cities[J]. Landscape and Urban Planning, 2018, 173; 51-59.
- [25] 陈永伟, 胡伟民. 价格扭曲、要素错配和效率损失: 理论和应用[J]. 经济学(季刊), 2011(4): 1401-1422.
- [26] 王宏鸣, 陈永昌, 杨晨. 数字化能否改善创新要素错配? ——基于创新要素区际流动视角[J]. 证券市场导报, 2022(1): 42-51.
- [27] 袁航,朱承亮. 国家高新区推动了中国产业结构转型升级吗[J]. 中国工业经济, 2018(8): 60-77.
- [28] 张安伟, 胡艳. 多中心空间结构与创新价值链效率: 影响效应及作用机制[J]. 科技进步与对策, 2024, 41(11): 1-12.
- [29] 韩峰, 庄宗武. 城市空间结构优化与企业创新[J]. 商业经济与管理, 2023(11): 68-86.
- [30] 吕冰洋, 贺颖. 迈向统一市场: 基于城市数据对中国商品市场分割的测算与分析[J]. 经济理论与经济管理, 2020(4): 13-25.
- [31] 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算: 1952-2000[J]. 经济研究, 2004(10): 35-44.
- [32] 李金锴, 钟昌标. 中国城市空间结构对经济均衡发展的影响[J]. 经济与管理研究, 2022(9): 17-31.
- [33] 刘修岩, 李松林, 陈子扬. 多中心空间发展模式与地区收入差距[J]. 中国工业经济, 2017(10): 25-43.
- [34] 刘修岩, 李松林, 秦蒙. 城市空间结构与地区经济效率——兼论中国城镇化发展道路的模式选择[J]. 管理世界, 2017, 33(1): 51-64.
- [35] 王峤, 刘修岩, 李迎成. 空间结构、城市规模与中国城市的创新绩效[J]. 中国工业经济, 2021(5): 114-132.
- [36] 白俊红,刘宇英. 对外直接投资能否改善中国的资源错配[J]. 中国工业经济, 2018(1): 60-78.
- [37] 肖有智, 张晓兰, 刘欣. 新质生产力与企业内部薪酬差距——基于共享发展视角[J]. 经济评论, 2024(3): 75-91.
- [38] 汪永涛. 青年发展型城市建设研究[J]. 中国青年研究, 2022(5): 4.

Agglomeration or Dispersion? How Urban Spatial Structure Shapes Innovation Allocation in China's Youth Development Pilot Cities

Li Ya, Liu Bowen

(School of Economics, Yunnan University, Kunming 650500, China)

Abstract: The emergence of youth development-oriented cities originates from the intersection of common urban development issues and specific youth development challenges in China. Urban spatial structure, whether agglomerated or dispersed, directly influences the agglomeration of young talent and the allocation efficiency of innovation factors. Based on LandScan Global Population Database from 2008 to 2022, the impact of the spatial structure of youth development-oriented cities on innovation factor misallocation was empirically analyzed. It was found that the degree of spatial dispersion in these cities lies on the left side of the "U-shaped" structure of innovation factor misallocation, with a further trend toward agglomeration. Further analysis of the dynamic flow mechanism reveals that the spatial structure alleviates innovation factor misallocation through the bidirectional flow of innovation capital and innovators, particularly with the flow of innovators benefiting surrounding cities. Static mechanism analysis indicates that the environment for innovative factor allocation optimizes resource allocation by mitigating innovation capital misallocation under the agglomeration trend in youth development-oriented cities. The research supports the adoption of reasonable spatial dispersion strategies in youth development-oriented city planning to optimize the allocation of innovation factors, and corresponding policy recommendations are proposed.

Keywords: youth development cities; innovative element allocation; LandScan