• 网站首页
  • 期刊简介
  • 编委会
  • 投稿须知
  • 绘图要求
  • 期刊订阅
  • 联系我们
  • English

用户登录

  • 作者登录
  • 审稿登录
  • 编辑登录
  • 读者登录

在线期刊

  • 当期目次

  • 过刊浏览

  • Email Alert

  • RSS

  • 文章点击排行

  • 文章下载排行

下载专区

  • 中国科学引文数据库(CSCD)来源期刊列表(2021—2022年度)

  • 2018年中国科技核心期刊目录(自然科学卷)

  • 标点符号用法

  • 《地球环境学报》绘图要求

  • 《地球环境学报》征稿简则

  • 2017年中国科技核心期刊目录(自然科学卷)

  • 2016年中国科技核心期刊目录 (自然科学卷)

  • 国标文献著录格式

友情链接

  • 中国科学院
  • 国家自然科学基金委员会
  • 中华人民共和国科学技术部
  • 中国科学院地球环境研究所
  • 中国科学院地球环境研究所...
引用本文:聂亚文,余明,蓝婷.2019.基于MAWEI指数的水体信息提取方法[J].地球环境学报,10(3):281-290
NIE Yawen, YU Ming, LAN Ting.2019.Research on water information extraction based on MAWEI index[J].Journal of Earth Environment,10(3):281-290
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4176次   下载 1962次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
基于MAWEI指数的水体信息提取方法
聂亚文,余明,蓝婷
1.福建师范大学 地理科学学院,福州 350007 2.福建师范大学 地理研究所,福州 350007
摘要:
遥感技术是快速而又准确获取水体信息的有效途径,对水资源管理与评估有着重要意义。以福州市闽江、贵阳市百花水库、曲靖市南盘江和泰安市东平湖区域Landsat 8影像为基础,构建改进的自动水体提取指数(MAWEI)对水体信息进行提取,利用目视解译结果作为精度验证数据,量化不同水体指数在多种环境条件下的水体提取精度。研究结果表明:(1)面向对象的分类方法改善了面向像素方法存在“椒盐现象”的缺点;(2)MAWEI、AWEInsh、AWEIsh和MNDWI四种水体指数在最优提取阈值的情况下,MAWEI指数提取水体的精度最高,效果最佳。且通过实验发现不同环境条件下MAWEI水体指数的稳定性较好。MAWEI指数可用于快速有效地提取大面积水体信息,能满足大面积的水体快速制图和土地利用的分类,对水体信息快速提取具有较强的应用价值,值得推广。
关键词:  水体指数  遥感影像  水体提取  精度评价
DOI:10.7515/JEE182080
CSTR:32259.14.JEE182080
分类号:
基金项目:福建省自然科学基金项目(2014J01149);福建省公益基金项目(2017R1034-4,2013R02)
英文基金项目:Natural Science Foundation of Fujian Province of China (2014J01149); Fujian Public Welfare Fund (2017R1034-4, 2013R02)
Research on water information extraction based on MAWEI index
NIE Yawen, YU Ming, LAN Ting
1. College of Geographical Science, Fujian Normal University, Fuzhou 350007, China 2. Institute of Geography, Fujian Normal University, Fuzhou 350007, China
Abstract:
Background, aim, and scope Remote sensing technology is an effective way to obtain water information quickly and accurately. It is of great significance for water resources management and evaluation. Aiming at improving AWEI water body extraction index, this paper proposes MAWEI method. The research content is to compare MAWEI method with other methods to verify its effectiveness, so as to provide a reference method for effectively extracting large area watershed water body. Materials and methods Based on Landsat 8 images of Minjiang River in Fuzhou City, Baihua Reservoir in Guiyang City, Nanpanjiang River in Qujing City and Dongping Lake in Tai’an City, this paper constructs an Modified Automatic Water Extraction Index (MAWEI) to extract water information. And the visual interpretation results are used as the accuracy verification data to quantify the water extraction accuracy of different water body indices. Results (1) It is found that e-Cognition can improve the “salt and pepper phenomenon” in the water extraction by ENVI. (2) Under the optimal extraction threshold, compared with AWEInsh, AWEIsh and NDWI, MAWEI index has the highest accuracy and the best effect. The stability of MAWEI water body index is better under different environmental conditions. Discussion All four methods extract the main contours of water body information. In these four research areas, the MAWEI method has relatively less errors and relatively high extraction accuracy. Conclusions MAWEI index can be used to extract large area water body information quickly and effectively. It can satisfy large area water body rapid mapping and land use classification. It has a strong application value for water body information fast extraction. Recommendations and perspectives The MAWEI index can quickly and effectively extract large-scale water body information with good results and high precision, and can meet the requirements for rapid mapping of large-scale water bodies and classification of land use. However, No water extraction method can extract all water body information completely and ensure that no other species mix in. A variety of methods can be synthesized to remove specific ground disturbance factors, such as shadows, buildings and so on.
Key words:  water index  remote sensing image  water extraction  accuracy evaluation
您是本站第  访问者
版权所有:《地球环境学报》编辑部 陕ICP备11001760号-3
主办:中国科学院地球环境研究所 地址:西安市雁塔区雁翔路97号 邮政编码:710061
电话:029-62336252 电子邮箱:jee@ieecas.cn
技术支持:北京勤云科技发展有限公司