• 网站首页
  • 期刊简介
  • 编委会
  • 投稿须知
  • 绘图要求
  • 期刊订阅
  • 联系我们
  • English

用户登录

  • 作者登录
  • 审稿登录
  • 编辑登录
  • 读者登录

在线期刊

  • 当期目次

  • 过刊浏览

  • Email Alert

  • RSS

  • 文章点击排行

  • 文章下载排行

下载专区

  • 中国科学引文数据库(CSCD)来源期刊列表(2021—2022年度)

  • 2018年中国科技核心期刊目录(自然科学卷)

  • 标点符号用法

  • 《地球环境学报》绘图要求

  • 《地球环境学报》征稿简则

  • 2017年中国科技核心期刊目录(自然科学卷)

  • 2016年中国科技核心期刊目录 (自然科学卷)

  • 国标文献著录格式

友情链接

  • 中国科学院
  • 国家自然科学基金委员会
  • 中华人民共和国科学技术部
  • 中国科学院地球环境研究所
  • 中国科学院地球环境研究所...
引用本文:李新周,刘晓东,马红艳.2023.人类活动对轨道尺度全球季风区降水影响的模拟研究【封面文章】[J].地球环境学报,14(5):557-572
LI Xinzhou, LIU Xiaodong, MA Hongyan.2023.Regulation of human activities on orbital-scale precipitation in global monsoon regions 【Cover】[J].Journal of Earth Environment,14(5):557-572
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2199次   下载 1505次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
人类活动对轨道尺度全球季风区降水影响的模拟研究【封面文章】
李新周,刘晓东,马红艳
中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061
摘要:
目前,人类活动导致的温室气体增加是全球气候变化的主要驱动因素之一,但其在轨道尺度上对未来气候影响的研究却很少。利用海-陆-气耦合模式,对早全新世(距今10 ka前)、现代和未来10 ka后的气候进行了一系列敏感性数值试验,主要探讨了在轨道尺度上自然强迫和人为温室气体对全球季风区气候变化的可能影响。模拟结果表明:在自然强迫驱动下,未来10 ka后的地球气候与早全新世类似,北半球的地表温度和降水将高于工业革命前的水平,而南半球则相反。在人类活动驱动下,未来10 ka后全球地表温度将显著增加,除北美季风区外,所有季风区雨季的降水都将增加。受人类活动的影响,与工业革命前相比,极端降水和大气有效降水也将增加。在自然强迫下,雨季大气有效降水的增加主要是由于动力作用引起的大气环流增强,而人类活动引起的现代和未来10 ka后大气有效降水的增加主要是由于热力作用引起的大气水汽增加所致。
关键词:  降水  人类活动  全球季风区  数值模拟
DOI:10.7515/JEE222024
CSTR:32259.14.JEE222024
分类号:
基金项目:国家自然科学基金项目(41991254);中国科学院战略性先导科技专项(XDB40030100)
英文基金项目:National Natural Science Foundation of China (41991254); Strategic Priority Research Program of Chinese Academy of Sciences (XDB40030100)
Regulation of human activities on orbital-scale precipitation in global monsoon regions 【Cover】
LI Xinzhou, LIU Xiaodong, MA Hongyan
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
Abstract:
Background, aim, and scope At present, the increase of greenhouse gases caused by human activities is one of the main drivers of global climate change, but its impact on future climate on the orbital scale has rarely been investigated. Meanwhile, climate anomalies in global monsoon regions are related to the production activities and livelihood of more than 70% of the world’s population, and have profound social and economic impacts. This study attempts to investigate the possible impacts of natural forcing and anthropogenic greenhouse gases on climate change over global monsoon regions on the orbital scale. Materials and methods A series of numerical sensitivity experiments of climate in the Early Holocene (EH), modern day, and 10000 years in the future (TTF) were performed using an atmosphere-land-ocean coupled model. By comparing and analyzing different numerical experiments and evaluating the results using Student’s t test, the relative contributions of natural and human forcing at orbital scale to the evolution of the typical global monsoon climate were discussed. Results This study focuses on the analysis of the characteristics and formation mechanism of precipitation, surface temperature, and extreme precipitation in the global monsoon regions under different forcing factors, and explores the dual effects of natural and human activities on climate. The simulation results show that, driven by natural forcing, the Earth’s climate in the TTF will be similar to that in the EH. In the northern hemisphere (NH), surface temperature and precipitation will be higher than their pre-industrial levels, whereas the southern hemisphere (SH) will experience opposite trends. Driven by human activities, the global surface temperature will significantly increase in the TTF, and precipitation in wet season will increase in all monsoon regions, except the North American monsoon region. Affected by human activities, extreme precipitation and atmospheric effective precipitation (precipitation minus evaporation, P−E) will also increase, with reference to pre-industrial levels. Discussion Through the comparison of experimental results, changes in precipitation caused by solar radiation forcing and greenhouse gas forcing can be deduced to be mainly concentrated in the monsoon region, while the change is relatively weak in the dry season. Therefore, the distribution of seasonal precipitation in the monsoon region is extremely uneven, and its annual precipitation is completely controlled by the wet season. But natural forcing and human activities have a small impact on surface evapotranspiration. Comprehensively considering precipitation and evaporation, P−E in NH is correspondingly more sensitive to solar radiation under natural forcing, and all monsoon regions are sensitive to human activities. Therefore, human activities are of vital importance in future climate prediction. Further analysis shows that, under natural forcing, the increase of P−E in wet season is mainly attributable to the enhancement of atmospheric circulation caused by the dynamic factor, while increases of P−E caused by human activities in the present day and TTF are mainly attributable to the increase of atmospheric vapor caused by the thermodynamic effect. Conclusions Under natural forcing, rainy season rainfall in TTF increases in the monsoon regions of the northern hemisphere but decreases in the southern hemisphere, compared with the pre-industrial. The increase of greenhouse gas concentration caused by modern human activities can increase precipitation in all monsoon regions. In the future, human activities will increase the contribution of extreme precipitation to total precipitation. Changes in atmospheric effective precipitation relative to the pre-industrial (Δ(P−E)) can better reflect the contributions of natural forcing and human activities on the orbital scale. Recommendations and perspectives These experiments are completely idealized based on current research and may be in conflict with the facts in the future. Therefore, it is worth further investigating future climate change using PMIP ensemble simulations and considering multiple factors comprehensively.
Key words:  precipitation  human activities  global monsoon regions  numerical simulation
您是本站第  访问者
版权所有:《地球环境学报》编辑部 陕ICP备11001760号-3
主办:中国科学院地球环境研究所 地址:西安市雁塔区雁翔路97号 邮政编码:710061
电话:029-62336252 电子邮箱:jee@ieecas.cn
技术支持:北京勤云科技发展有限公司