• 网站首页
  • 期刊简介
  • 编委会
  • 投稿须知
  • 绘图要求
  • 期刊订阅
  • 联系我们
  • English

用户登录

  • 作者登录
  • 审稿登录
  • 编辑登录
  • 读者登录

在线期刊

  • 当期目次

  • 过刊浏览

  • Email Alert

  • RSS

  • 文章点击排行

  • 文章下载排行

下载专区

  • 中国科学引文数据库(CSCD)来源期刊列表(2021—2022年度)

  • 2018年中国科技核心期刊目录(自然科学卷)

  • 标点符号用法

  • 《地球环境学报》绘图要求

  • 《地球环境学报》征稿简则

  • 2017年中国科技核心期刊目录(自然科学卷)

  • 2016年中国科技核心期刊目录 (自然科学卷)

  • 国标文献著录格式

友情链接

  • 中国科学院
  • 国家自然科学基金委员会
  • 中华人民共和国科学技术部
  • 中国科学院地球环境研究所
  • 中国科学院地球环境研究所...
引用本文:朱丽,国巧真,吴正鹏,吴欢欢,何云海.2022.多尺度分割与特征优选下的盐碱地提取[J].地球环境学报,13(6):714-723
ZHU Li, GUO Qiaozhen, WU Zhengpeng, WU Huanhuan, HE Yunhai.2022.Extraction of saline-alkali land based on multi-scale segmentation and feature optimization[J].Journal of Earth Environment,13(6):714-723
【打印本页】   【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2550次   下载 1586次 本文二维码信息
码上扫一扫!
分享到: 微信 更多
字体:加大+|默认|缩小-
多尺度分割与特征优选下的盐碱地提取
朱丽,国巧真,吴正鹏,吴欢欢,何云海
1.天津城建大学 地质与测绘学院,天津 300384
2.天津市测绘院有限公司,天津 300381
摘要:
土地盐渍化作为一种土壤灾害,严重制约着社会经济与农业的发展。对盐碱地进行实时监测,可为盐碱地的评价改良提供科学依据。由于盐碱地的信息复杂、提取精度不高,因此本文以高分六号(GF-6)卫星遥感影像为数据源,采用分形网络演化算法(fractal net evolution approach,FNEA)进行影像对象的多尺度分割,从面向对象的角度减少高分影像分类结果中的椒盐噪声问题,通过计算图像对象的局部方差和变化率来确定适宜的盐碱地分割尺度。利用基于特征选择的相关性算法(correlations-based feature selection,CFS)与Relief F算法分别对由光谱、纹理、形状、遥感指数构成的初始特征空间进行特征优选,精简特征子集,解决特征数量冗余问题,以此来优化随机森林对盐碱地提取精度。结果表明:CFS约简后的特征子集更小,精度更高,说明在盐碱地提取过程中,筛选特征数目能够减小冗余数据对提取精度的影响。CFS优化后的随机森林对盐碱地的提取效果较好,该方法总体分类精度达到83.7%。
关键词:  GF-6  盐碱地  面向对象  特征选择  随机森林
DOI:10.7515/JEE222035
CSTR:32259.14.JEE222035
分类号:
基金项目:天津市自然科学基金项目(18JCYBJC90900);国家自然科学基金项目(41971310)
英文基金项目:Natural Science Foundation of Tianjin (18JCYBJC90900); National Natural Science Foundation of China (41971310)
Extraction of saline-alkali land based on multi-scale segmentation and feature optimization
ZHU Li, GUO Qiaozhen, WU Zhengpeng, WU Huanhuan, HE Yunhai
1. School of Geology and Geomatics, Tianjin Cheng jian University, Tianjin 300384, China
2. Tianjin Institute of Surveying and Mapping Co., Ltd., Tianjin 300381, China
Abstract:
Background, aim, and scope As a kind of soil disaster, soil salinization restricts the development of social economy and agriculture seriously. Real-time monitoring of saline-alkali land can provide scientific basis for evaluation and improvement of saline-alkali land. This paper mainly discussed the effect of object-oriented feature optimization algorithm applied to saline-alkali land. Taking Binhai New Area of Tianjin as the research area and the saline-alkali land as the research object, an optimization model was established to extract saline-alkali land. Materials and methods Taking GF-6 satellite remote sensing image as the data source, from the perspective of object-oriented, FNEA was used to segment the image object in multi-scales. Based on the statistics of local variances and change rates under different scales, the appropriate scale for saline-alkali land recognition was selected. On this basis, the initial feature space was constructed from four perspectives: spectral feature, texture feature, shape feature and remote sensing index feature. Two algorithms, CFS and Relief F algorithm, was used to optimize the initial feature space respectively. The obtained feature subset was used to optimize the extraction effect of random forest algorithm on salinized land, and the two optimization results were compared and discussed. Results (1) FNEA algorithm was used for multi-scale segmentation, and the appropriate segmentation scale of saline-alkali land in the study area was 123. (2) The initial feature space was optimized by CFS algorithm and Relief F, and the number of features was reduced to 40 and 17 respectively. (3) The overall classification accuracy of random forest extraction of saline alkali land was 76.3%, and that of random forest optimized by Relief F algorithm was 77.4%. The overall classification accuracy of CFS-optimized random forest in salt and alkali extraction was 83.7%. Discussion These results indicated that the CFS and Relief F, as two classical data filtering algorithm, for feature selection, can improve accuracy of random forest model in saline-alkali land, and can make the model improved to a certain extent. The overlap rate feature subsets optimized by the two algorithms was as high as 82%, indicating that the two kinds of algorithm of important characteristics were good search results. In addition, the features filtered out by CFS algorithm were almost twice as many as those filtered out by Relief F, but CFS optimized random forest had a better extraction effect on saline-alkali land, which indicated that the number of features was not positively correlated with the final classification accuracy. Conclusions Compared with Relief F algorithm, the random forest model optimized by CFS algorithm had a better recognition effect on saline-alkali land extraction, and the overall accuracy was 83.7%, which was 7.4% higher than that before optimization. CFS algorithm reduced the features to 17 and filtered 81.7% of the features, which solved the problem of data redundancy to a certain extent and improved the quality of data subset and the operating efficiency of stochastic forest algorithm. Recommendations and perspectives Firstly, The research ideas proposed in this paper can solve the problem of machine learning capability degradation caused by high-dimensional data redundancy, and can be applied to the optimization of other algorithm models and the recognition and extraction of ground classes. Secondly, in view of the different characteristics of saline-alkali land in different seasons, the influence of seasonal change on saline-alkali land should be considered in the future research.
Key words:  GF-6  saline-alkali soil  object-oriented  feature selection  random forest
您是本站第  访问者
版权所有:《地球环境学报》编辑部 陕ICP备11001760号-3
主办:中国科学院地球环境研究所 地址:西安市雁塔区雁翔路97号 邮政编码:710061
电话:029-62336252 电子邮箱:jee@ieecas.cn
技术支持:北京勤云科技发展有限公司